质数和合数 教学设计3篇

作为一名教师,常常要根据教学需要编写教案,借助教案可以有效提升自己的教学能力。教案应该怎么写才好呢?以下是可爱的小编帮大家收集整理的质数和合数教学设计3篇。

质数和合数教学设计 篇1

1.使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2.培养学生观察、比较、抽象、慨括的能力。

3.培养学生自主探究的精神和独立思考的能力。

教学重点:质数和合数的概念。

教学难点:正确区分质数、合数。

教学过程:

课前谈话:

给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小*的分类方法。明确:分类的际准很重要。

一、复习旧知

说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)

给这些自然数分类。根据自然数能不能被2整除,可以分成奇数和偶数两类。

板书对应的集合图。

自然数

(能不能被2整除)

把学生列举的数填写在对应的集合圈里。

问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找质数的方法来给自然数分类。

复习:什么叫因数?怎样找一个数所有的因数?

同桌合作.找出列举的各数的所有的因数。(同时板演)

引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况!

根据学生的回答板书。

自然数

(因数的个数)

(只有两个因数)(有3个或3个以上的约数)

引导学生思考:只含有两个因数的,这两个因数有什么特点?引出质数的概念。

明确合数的概念.提问:合数至少有几个因数?想一想:1的因数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)

猜一猜:奇数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,奇数,偶数的个数也是无限的。运用新知,解决问题。

出示例1下面各数,哪些是质数?哪些是合数?

1528315377891ll

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的因数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的因数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成练一练。

三、练习巩固

1、坚持下面各数的因数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22293549517983

2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)

学生操作后,提问:剩下的都是什么数?

告诉学生:古代的数学家就是用这样的方法来找质数的。

四、全课总结

学到这里,一种新的分类方法,你掌握了吗?学生回答:揭示课题,质数和合数

讨论:质数、合数、奇数、偶数之间是这样的关系呢?

五、布置作业(略)。

教学反思

概念的教学往往是枯燥的,一般不是有教师和学生的重复不断语言就是有很多的练习题训练。而这一节课教学使学生感到特别兴奋。

第一、在概念教学中,师生的这种融洽的、和谐的,而又不失激情的课堂氛围感染了我。它一改概念教学的枯燥与乏味。让学生在做中学,源于课本又超越了课本,学生用本册刚刚学到的数据收集和整理的知识,来动手操作研究这一节课,使得学生的兴趣一下子就被调动起来了。

第二、探究、合作、讨论、自主学习是新课程标准的基本理念。在概念教学中如何实施这一理念是这一节课的特色,教学中教师通过自己对教材的理解,对学生的了解。精心设计了问题,巧妙地进行引导学生思考、讨论探索、总结发现规律。学生通过异质的组合来讨论、探究知识,促进相互的学习,提高合作的能力,这对学生一生的发展都的有用的。

第三、大数学观是小学数学新课程标准的重要理念,这一片段的教学中不仅体现了小学数学知识的综合性强的特点,而且真正的把数学知识的教学、动手能力、合作能力等人文素养的培养结合在一起。学生的异质组合讨论、动手拼一拼、相互商议、个别争论等都无不体现了教师先进的教育教学理念。

《质数和合数》教学教案 篇2

教学目标:知识与技能:

1、掌握质数和合数的意义。

2、熟记20以内质数,能较快地、准确地辩识一个常见数是质数还是合数。

3、通过探究质数和合数的意义,培养学生的探究意识和能力。

数学思考:

1、透过实际箱装饮料罐的排列方式,感知生活中有数学。

2、能对现实生活中箱装饮料罐的数字信息作出合理解释。

情感与态度:

1、由简单、实际的生活例子开始,减少学习时遇到太过抽象,无法理解的情况,以增加学习信心。

2、在形式多样的练习中,激发学生的学习兴趣。

教具学具:

cai、投影仪、学习单2张,学号数字卡。

教学过程:课前谈话。

如果让你给来听课的老师分类,你想怎样分?(按性别分成男和女两组,按年龄分年青和年长两组…)也就是说按不同的标准分有不同的分法。

一、生活实例引入

1、观察生活:

(1)师:日常生活中,一箱饮料通常都是排在长方体的纸箱中。

请你猜猜看:通常一箱饮料的总数量会是些什么数?(生猜:偶数、奇数……)

师:真是这样的吗?

(2)老师这里拍摄了一些箱装饮料的照片,大家一起来看一看:每箱饮料共有多少瓶?是怎样排列的?用算式表示。

教师出示4张不同数量装箱的照片:  板书:   9=33

9瓶啤酒、12瓶可乐、                    12=34

15瓶牛奶、24瓶雪碧                     15=35

24=46

学生观察并说一说:9瓶啤酒排成3行3列,9=33……

(师板书在黑板右侧)

2、实际数量的多种排列方法,分析可行性:

这些数量装在一个长方体纸箱中,还可以怎样排?(学生说出尽可能多的排列方法,老师补充前面板书。)

板书:9=33=19

12=34=26=112

15=35=115

24=46=38=212=124

提问:你觉得哪种排列方式,实际生活中采用的可能性最小?(请一学生在黑板上勾一勾。)

为什么?(不便携带……)

3、比较质疑,引入新课:

现在老师这儿有13瓶饮料,请你将它们排在一个长方体纸箱中,要求每排数量相等,可以有哪些排法?17呢?19呢?

板书:13=113              学生思考,同桌说一说

17=117             (师板书在黑板左侧)

19=119

你还能举出几个这样的数吗?

据学生回答:20以内的质数。(这样的数还有很多)

二、探究原因:

(一)、探究质数意义:

1、想一想:为什么右边的数量可以排成多行多列,而左边的数量不能排成多行多列呢?

(评:这个问题抓住了实质,它是本节课的核心和关键,非常具有思考价值,学生的思维被充分地调动起来。)

四人小组讨论(相机提示:跟这些数的约数有关。仔细观察左边这些数的约数,你发现了什么?)

汇报][:(鼓励学生用自己的语言描述)

整理揭示:象这样只有1和它本身两个约数的数叫“质数”。

(cai辅助逐步演示。)

2:1、 2

3:1、 3

5:1、 5

7:1、 7

11:1、11

13:1、13

17:1、17

19:1、19

……

2、再举几个质数,并说明理由。

(评:适时巩固应用,加深理解概念。)

(二)、探究合数

1、用质数判断合数:右边这些数也是质数吗?(不是)为什么?

除了1和它本身还有别的约数。

揭示:象这样除了1和它本身,还有别的约数的数,叫“合数”。

(cai辅助逐步演示)

4:1、4、2

6:1、6、2、3

8:1、8、2、4

9:1、9、3

10:1、10、2、5

12:1、12、2、6

14:1、14、2、7

15:1、15、3、5

16:1、16、2、8、4

18:1、18、2、9、3、6

20:1、20、2、10、4、5

……

2、请你再举几个合数,并说明理由。

3、比较巩固意义:你觉得判断一个数是质数还是合数的关键是什么?(约数的个数。)

(三)、谜底揭晓:日常生活中一箱饮料的总数量通常是些什么数?(板书:合数)很少采用什么数?(板书:质数)

(四)、巩固练习,并引出“1”

1、判断下列各数(是质数,一、二组举手;是合数,三、四组举手)。

2、17、50、22、37、35、29、87、1

提问50、87的判断方法(联系旧知:能被2、5、3整除的数的特征)

2、当最后判断“1”时,都没举手,提问:为什么?

学生充分发表意见

揭示:“1”只有一个约数,它既不是质数,也不是合数。(cai演示。)

(五)、总结并揭题:这节课我们学到了哪些新知识?

三、发展练习(cai辅助演示。)

1、学习单1:小组合作完成后,是的画“√”。1、学习单1:是的画“√”。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

奇数

偶数

质数

合数

填一填:

(1)最小的奇数是   (   )

(2)最小的质数是   (   ),

(3)最小的合数是   (   )

(4)既是偶数又是质数的只有  (   ),

(5)既是奇数又是合数的有    (   )、(   )……

判断下列说法是否正确。

(1)在自然数中,除了质数以外都是合数。    (   )

(2)除2以外,所有的偶数都是合数。        (   )

(3)所有的奇数都是质数。                  (   )

(4)两个质数相加,和一定是合数。          (   )

(5)9既是奇数又是合数。                   (   )

2、猜一猜老师的电话号码。

第一位:10以内既是偶数又是合数的最大数

第二位:既是质数又是奇数的最小数

第三位:最小的质数

第四位:10以内最大的质数

第五位:最小的合数

第六位:既不是质数又不是合数的数

第七位:10以内既是奇数又是合数的最大数

第八位:最小的偶数

四、动脑筋离开教室。

请最特殊的数“1”离开教室;

请既是奇数又是合数的离开教室;

请质数离开教室;

请既是偶数又是合数的离开教室。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

(课件按要求逐步出示数字,学生在自我判断后对照课件上的数字选择离开教室)

《质数和合数》数学教案 篇3

教学目标:使学生理解质数与合数的饿意义,掌握判断质数合数的方法,

教学过程:

一、复习

约数的概念,找约数的方法。

二、引入新课

例1写出下面每一个自然数的全部约数,在根据约数的个数,把这些自然数进行分类。

自然数约数

11

21、2

51、5

91、3、9

111、11

121、2、3、4、6、12

171、17

201、2、4、5、10、20

381、2、19、38

451、3、5、9、15、45

(1)找约数

(2)按照约数的多少进行分类?

(3)讨论:1是什么数?

最小的质数是几?

最小的合数是几?

三、巩固练习

1、练一练

第一题,练习判断一个数是质数还是合数。

分析:怎样去判断一个自然数是质数还是合数

2、试一试

第三题判断下面各题,正确的在括号里打对,不正确的打错。

四、总结归纳

1、使学生弄清奇数与质数,偶数与合数是不同的概念

五、布置作业

反思:对于本节课的知识学生还好理解,但当把自然数的另一个分类混合的时候学生的概念就出现了混乱。所以我们的教学不能光着眼于学生会不会做这些题目,而是应该真正的了解把自然数分成1、质数、合数的理由是什么。并懂的与偶数、奇数的分类是不同的理由,也就是两个不能相等的概念。并渗透一种交叉的概念。

一键复制全文保存为WORD
相关文章