《圆的周长》教案(最新8篇)

作为一名专为他人授业解惑的人民教师,常常需要准备教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写呢?以下是编辑给家人们收集整理的《圆的周长》教案(最新8篇),欢迎参考,希望大家能够喜欢。

《圆的周长》教案 篇1

六年级上册数学(p62——64)

一,教学目标

1,理解圆周率的意义,掌握圆周率的近似值。理解和掌握圆的周长的计算公式,并能应用它解决简单的实际问题。

2,培养学生的观察,比较,概括和动手操作能力。

3,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

二,教学重点

掌握并理解圆的周长,公式推导过程。

三,教学难点

理解圆周率的意义。

四,教学过程

一,创设情境,提出问题

1,师出示圆形桌布,提出在桌布的边缘镶上一圈花边。要想知道至少准备多长的花边,怎么办 请你帮忙想想办法

2,你们知道这圈花边的边长是什么 (生:圆的周长。)

3,用直尺测量圆的周长,你感到方便吗 能不能找到比较简便的方法

二,师生共同提出假设

1,请学生回忆正方形周长和边长的关系。(边长×4)

2,师:能不能求圆周长的同时也找到这样的倍数关系呢 测量圆的什么比较方便呢

生:半径,直径……

3,请生先画几条长短不一样的直线作直径画圆。师:观察自己画的圆,你发现了什么

学生仔细观察:分组讨论研究圆的周长和直径是否存在倍数关系。

4,师:你估计圆的周长是其直径的几倍

生猜想:3倍左右。

5,师:你有办法验证吗 生讨论

教学意图:正方形的周长只与边长这个数有关系,这点与圆的周长计算方法相似,本环节选择这一教案内容,用于复习旧知和引入新知,渗透的作用是非常有效的。

三,合作交流,发现规律

1,学生思考后可能出现的以下办法:

⑴ 用一根线(或纸条)绕圆一周,剪去多余的部分,再拉直量出它的长度,得到圆的周长。

⑵ 把圆放在直尺上滚动一周,直接量出圆的周长。

师启发学生:用滚动,绳测的方法可以测出圆的周长,但有局限性,那么:我们能不能探讨出一种求圆的周长的普遍规律呢

⑶ 学生在小组内动手操作,测量进行验证。

直径(cm) 周长(cm) 周长是直径的几倍

2 6.2 3倍多一点

3 9.1 3倍多一点

4 12.9 3倍多一点

2,小结

a,"圆的周长÷直径"等于3倍多一点,经过科学家精密的论证,计算发现这个"3倍多一点"是一个固定数叫圆周率3.14159……是一个无限不循环小数,我们在计算时通常取3.14,用字母π表示(请学生写一写)

b,结合圆周率进行爱国注意教育。

c,师生共同推导计算圆的周长公式。

教学意图:在圆的周长测量中,充分发挥学生的主体地位,课堂上,使学生手脑都动起来,通过各种形式的个人实践及小组合作实践使学生亲而义举的发现规律,掌握知识,学生不是在学习知识,而是在探究,实验,发现新知,这样的课堂,可以使学生的动手,动脑,动嘴,合作的能力都能得到锻炼提高。

四,实践应用,拓展新知

1,学生尝试求圆的周长

d=2cm r=3.5cm d=10cm

2,圆形花坛的直径是20cm,它的周长是多少m

3,请同学们画一个周长是15cm的圆。

教学意图:设计有坡度的练习,目的是让学生运用圆周长的计算公式反映生活中的实际问题,巩固已经学过的公式,培养学生的学习兴趣,提高学生学习探索的能力。

五,总结评价,体验成功

1,通过这节课的学习,你学会了什么

2,课后思考:从边长是4cm的正方形中画出一个最大的圆,这个圆的周长是多少cm

板书设计:

圆的周长

围成圆的曲线的长叫做圆的周长。

c=πd c=2πr

圆的周长教案 篇2

一、教学目标

【知识与技能】

掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。

【过程与方法】

通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。

【情感态度与价值观】

积极参与数学活动,培养学习数学的兴趣。

二、教学重难点

【重点】圆的周长的计算公式。

【难点】圆的周长公式的推导过程。

三、教学过程

(一)导入新课

创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。

学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。

教师明确,圆一圈的长度即为圆的周长。

引入课题——圆的周长。

(二)探索新知

1、探索发现

学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。

学生汇报测量结果及测量方法。

教师引导学生思考,圆的周长大小与什么有关。

学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。

教师明确直径是半径的2倍,可看其中一项即可。

2、探索圆的周长与圆的直径关系

小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。

小组汇报分享测量结果,教师板书。

学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。

学生汇报通过多次测量计算比值总在3.1左右。

教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。

给出圆周率的特点:

(1)是一个无限不循环的小数;

(2)我国伟大的数学家祖冲之将其精确到小数点后七位;

(3)现在为了方便只要取小数点后两位即可。

(三)应用新知

问题:大头儿子家圆桌直径为1米,求需要买多长的'铁丝?3.1米够吗?

教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。

(四)小结作业

提问:通过本节课,你有什么收获?

课后作业:回家找一个圆形,借助直尺测量,计算出周长。

四、板书设计

圆的周长教案 篇3

教学内容:九年义务教育人教版第11册

教学目标:

1、使学生认识圆的周长,知道圆周率的意义,理解和掌握圆的 周长计算公式;

2、发展学生空间观念,培养学生抽象思维和解决简单实际问题的能力;

3、培养学生情感,使学生受到爱国主义教育。

教学重点:推导圆周长的计算公式。

教学难点:理解圆周率的意义。

教具准备:多媒体课件、直尺、剪刀、绳子、圆形纸片等。

教学过程:

一、启发

1、创设情境:(课件出示动画故事:小白兔和兰精灵进行跑步锻炼,争论谁最先到达原来的起点。(正方形和圆形跑道,正方形边长20米,圆形直径20米、跑步的速度相同。)

2、讨论:小白兔和兰精灵到底谁最先跑回原来的出发点?

揭示课题。(板书:圆的周长)

二、探究

1、观察:看屏幕上的圆,说一说什么叫圆的周长?

2、摸一摸:拿出一个圆形纸片,指出:拿的这个周长是指哪一部分长?

3、比一比:拿出两个大小不同的圆形纸片。

哪个圆的周长长一些?

4、量一量:(分小组合作)

学生用剪刀、直尺和绳子测量出手中圆形纸片的周长。

5、信息反馈: ① 小组汇报所测量的圆的周长是多少?

板书: 周长

○ 12cm多一些

○ 31cm多一 些 ○ 47cm多一些

② 生说一说是怎样测出圆的周长的?(绳测法、滚动法)

③(课件演示)绳测法和滚动法的操作过程;

④讨论:能用这方法测量出这个圆的周长吗?

(教师演示)拿一根栓了重物的绳子在空中抡了一圈。。

如何才知道它的周长呢 ?

6、①猜一猜: 圆的周长和圆的什么有关系?

②(课件演示)三个直径不同的圆,分别滚动一周,得到三条线段的长分别是三个圆的周长。 发现了什么?说明了什么 ?(圆的周长和它的直径有关系)

7、①再猜 一猜,圆的周长和它的直径有什么样的关系?

②学生分成四人小组,测量、计算、讨论圆和直径的关系。

③小组汇报测量结果。

板书: 周长 直径

○ 12cm多一些 4cm

○ 31cm多一 些 10cm ○ 47cm多一些 15cm

结论:圆的周长是直径的3倍多一些。

④课件出示:验证学生发现的规律是否具有普遍性。

⑤小结:无论圆的大小、圆的周长总是它直径的3倍多一些。

6、介绍圆周率,结合进行爱国主义教育。

①教师引出“圆周率”,介绍用字母“∏”来表示,并介绍读法。

②出示祖冲之画像,配音介绍祖冲之及圆周率知识(∏≈3。14)

③对学生进行爱国主义思想教育。

7、讨论:如果知道了一个圆的直径或半径,怎样求圆的周长?

(圆的`周长=直径×圆周率)(C=∏D或C=2∏r)

三、知

1、让学生把测量的三个圆用公式计算出三个圆的周长来。

2、让学生把老师在空中用绳子甩一圈的圆的周长计算出来。

(绳子的长度就是圆的半径)

3、抢答:①D=1分米,C= ?

②r=1厘米,C=?

③C=12。56米,D=?

4、出示例1,让学生独立计算。

5、裁定原来兰精灵和小白兔的争论。谁先到达起点?知道是为什么了吗?(课件演示跑的过程)

四、评议

1、本节课你学到了什么?有什么体会?有何感受?

2、本节课学习主要采用了什么方法?

3、本节课学习后对你生活有什么帮助?

4、在学习中你认为自己表现如何?谁表现最好?为什么?你准备在以后学习中怎样做?

关于圆的周长教学设计教案 篇4

教学目标:

1.生经历探索已知一个圆的周长 求这个圆的直径或半径的过程,体会解题策略的多样性。

2.生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

3.学生感受平面图形的学习价值,进一步提高学习数学的兴趣和学习数学的信心。

教学重点:

探索已知圆的周长,求这个圆的直径或半径的方法。

教学难点:

能熟练运用圆的周长公式解决实际问题。

课前准备:

多媒体课件

教学设计:

一、教学例6。

⑴ 课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的周长,再算出花坛的直径。)

⑵ 课件出示测量的结果:花坛的周长是251.2米。

小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?

① 在小组中说说自己的想法。

② 展示自己是怎么解答的。

⑶ 全班展示、交流。

① 根据圆周长公式C=πd列方程解答。

解:设这个花坛的直径是x米。

3.14x=251.2

x=251.2÷3.14

x=80

② 直接用除法计算。

251.2÷3.14=80(米)

⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?

小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间

的关系计算。

2.习“试一试”。

二、巩固拓展

1.成“练一练”。

提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

2.成练习十四第5题。

3.成练习十四第6题

4.成练习十四第7题。

5.生完成练习十四第8题。

6.成练习十四第9、10题。

三、总结延伸

本节课,你有哪些收获?还有什么疑问?

圆的周长教案 篇5

教学目标:

⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

教学重点、难点

教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

教学过程设计

一、创设情境,引发探究

⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

⒉揭示课题

⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

板书课题:圆的周长

二、人人参与,探究新知

(一)教具演示,直观感知,认识圆周长。

教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

(二)理解圆周率的意义

活动一:测量圆的周长

⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

然后各组分工同桌合作,量出圆片的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

⒉用"几何画板"《小球的轨迹》演示形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

活动二:探究圆周长与直径的关系,认识圆周率。

⒈圆的周长与什么有关。

⑴启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

⑵利用不同长度的小球形成的三个圆,让学生观察思考考:。哪一个圆的周长长?圆的周长与它的什么有关呢?

得出结论:圆的周长与它的直径有关。

⒉圆的周长与直径有什么关系。

⑴学生动手测量,验证猜想。

学生分组实验,并记下它们的周长、直径,填入书中的表格里。

⑵观察数据,对比发现。

提问:观察一下,你发现了什么呢?

(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

⑶出示"几何画板"《周长与直径的关系》演示。

⑷比较数据,揭示关系。

正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

⒊认识圆周率

⑴揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

⑵介绍π的读写法

⑶指导阅读,了解中国人引以为自豪的历史。

提问:你知道了什么?

(三)推导圆的周长计算公式。

⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?

学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

三、应用新知,解决问题

1、和自己的伙伴一起解答例1和做一做

2、说出这两题用哪个公式比较好?

四、实践应用,拓展创新。

⒈基础性练习:

(1)求下列各圆的周长(几何画板)

r=3厘米 d=4厘米

(2)、我们现在有办法求唐老鸭跑的路程吗?

⒉、判断

①圆的周长是直径的π倍。

②大圆的圆周率小于小圆圆周率。

3、提高练习

在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

五、总结评价,体验成功

1、你学到了什么?

2、你是怎么学到的?

圆的周长教案 篇6

教学内容:

圆的周长(小学数学九年制义务教材第十册).

教学目的:

1.让学生知道什么是圆的周长.

2.理解圆周率的意义.

3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

教学重点:

推导圆的周长计算公式.

教学难点:

理解圆周率的意义.

教具学具:

1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

2.电脑软件及演示教具.

教学过程:

一、复习:

上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

二、导入:

这节课我们继续研究圆的周长(板书课题).

1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

问:什么是圆的周长?

板书:围成圆的曲线的长是圆的周长.

3.你能测量出这个圆的周长吗?(能)

4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

回答:不能.

想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的。周长呢?今天我们就来研究这个问题.

三、互动

请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

四、学生动手测量、教师巡视指导.

五、统计测量结果.

观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

六、电脑演示

(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读通过实验到3.14.

七、看书后回答问题:

1.是谁把圆周率的值精确计算到6位小数?

2.什么叫圆周率?

3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

4.如果用字母c表示圆的周长,d表示直径,r表示半径,表示圆周率,圆的周长的计算公式应该怎样表示?

现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(取3.14)

八、出示例1:

一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

(得数保留两位小数)

请同学们想一想:车轮滚动一周的距离实际指的是什么?

解:d=1.95 单位:米

c=d

=3.141.95

=6.123

6.12(米)

答:车轮滚动一周约前进6.12米.

九、课堂练习:

1.投影:计算下面图形的周长.

2.判断下面各题(正确的出示,错误的出示)

(1)圆周率就是圆的周长除以它的直径所得的商. ( )

(2)圆的直径越大,圆周率越大. ( )

(3)圆的半径是3厘米,周长是9.42厘米. ( )

3.小明和爷爷分别沿小圆(ABCDEA)和大圆两条路线散步

《圆的周长》教案 篇7

教学内容:冀教版《数学》六年级上册第六单元一课时

教学目标:

1、在观察、测量、讨论等活动中经历探索圆的周长公式的过程。

2、理解并掌握圆的周长公式,会用字母表示,能运用周长公式进行计算。

3、体验数学与日常生活的紧密联系,了解圆周率的发展史,激发民族自豪感和探索精神。

课前准备:硬币、直尺、细线、软尺、3个大小不同的圆形纸片、计算器。

教学过程:

一、问题引入,揭示课题。

师:同学们,你们知道我们今天要学习什么吗?

生:通过看作业纸,我知道今天要讲《圆的周长》。

师:其他同学同意他的说法吗?今天我们就一同来学习圆的周长。(板书:圆的周长)课件出示作业纸

师:同学们,通过你们对作业纸的试做和对今天所学内容的预习,相信同学们都有所收获,有的同学可能也有疑虑或者问题,下面就请小组长组织好本组同学把你学会了什么?明白了什么在小组里交流交流,把不明白的也说一说,小组长做好记录,形成问题,待会儿我们汇报。课件出示这些要求

二、小组交流,交换质疑。

师:交流完了吗?小组长们谁先来代表本组汇报汇报?

三、全班交流,形成问题。

生:我们小组明白了

1、圆的周长是围成圆的一周的长度。

2、任何圆的周长总是直径的3倍多一些。

3、圆周率用字母∏来表示,∏约等于3.14。

我们不明白的是:

1、圆的周长与什么有关系?有什么关系?

2、圆的周长怎么求?又是怎么推导的?

3、怎么测量圆的周长。

4、用什么办法可以得到圆的周长?

师:同学们,为了节省时间,其他小组在说的时候就不要重复了,主要是做一下补充。

生:我们组明白了圆周长字母表示形式是c=∏d或c=2∏r

生:我们明白了圆周率是一个无限不循环小数。圆周长和直径半径有关系,怎么得来的还要想想。

师:同学们说的很好,看来大家预习的很充分,问题也提的很有价值,要学习圆的周长首先要明白圆的大小和谁有关系,也就是圆的周长和谁有关系,让我们带着这样的问题一同走进美丽的圆。

四、引导探究、解决问题。

1、初步了解圆的周长和半径、直径的关系。

师:同学们,自行车是一种非常方便的交通工具,我们不仅骑车子上班、上学,有时在周末还会骑车子去郊游,你看,星期天,天气多好呀,亮亮一家骑车子去郊游,仔细观察这幅图,你看到了什么?

生:车子大小不同。

生:聪聪骑得车子轮子最小,爸爸的车子轮子最大。

师:如果这三辆自行车都转动一周,谁走的最远?

生:爸爸的车子走的最远。

师:为什么呢?

生:因为爸爸的车子轮子最大。

师:同学们请看大屏幕,想想圆的周长的长短与圆的什么有关系?屏幕出示三个大车轮的图片

生:与半径有关系,半径越长,周长越长。

生:与直径有关系,直径越长,周长越长。

师:看来同学们都有了统一的认识,你们看这三个圆,哪个圆的周长最长?

生:1号圆。

师:那么圆的周长和直径、半径还有怎样的关系呢?接下来进入我们的探究环节。

2、小组合作探究圆周长与直径、半径的关系。

师:同学们,课前我们分好了四人小组,现在要小组合作了,老师希望每个小组成员都要先听清楚要求再动手去做。

小组合作要求:

1、利用手中的学具测量物品中圆的周长和它的直径。

2、把测量的数据填入记录单中,用计算器算出圆的周长是它直径的几倍。(得数保留两位小数)

3、观察得到的数据,你发现了什么?

师:哪个小组先汇报?先说说你们采用的方法,再说结果。

生:绕线法。

生:滚动法。

师:同学们很聪明,把圆周长这条曲线变成了直线段,这叫做化曲为直。

师:通过刚才的动手操作,你们发现了什么?哪个组说说?

生:圆的周长÷直径=3倍多一些(板书:圆的周长÷直径=3倍多一些)

师:这三倍多一些是多少呢?

生:书上说是3.14。

师:任意圆的周长总是直径的三倍多一些,这个倍数是一个固定不变的数,我们叫做圆周率,用字母∏表示。(板书:圆周率  ∏)

师:今天我们研究的圆周率,早在多年前,我国古人就对此进行过研究。让我们一起去看看吧。

屏幕出示祖冲之

师:同学们,你们有什么想法吗?

生:祖冲之真伟大,我们的祖先真有智慧。

生:我也挺聪明的,我算出来的答案跟祖冲之爷爷的很接近。

师:今天我们计算到了小数点后第12411亿位,这个数有多少呢?如果你一秒钟读一个数的话,大约需要读4万年。并且我们还没有计算到尽头。

师:圆周率的小数点每前进一位,都要付出几代人的努力,看来真理需要我们孜孜不倦的追求。老师希望同学们今后能够像这些科学家一样,勇于探索,不断追求。

师:我们了解到圆周率是一个无限不循环小数,我们在计算的时候只取它的近似值3.14。(板书3.14,擦掉3倍多一些)

师:圆的周长怎么求呀?

生:圆的周长=直径×3.14

师:板书c=∏d  谁来说说你是怎么理解的?

生:c表示圆的周长,d表示直径,∏表示圆周率,

c=∏d

师:如果知道半径,应该怎样写?

生:c=2∏r

师:你是怎么想的?

生:在同一个圆里,直径是半径的两倍。

师:从大家的表情可以看出同学们今天学习的很轻松,这些都得益于同学们充分的预习,老师佩服你们,现在如果给出圆的直径或半径,你能求出圆的周长来吗?能口算的就口算。(课件出示一大一小两个圆,一个半径1厘米,周长6.28厘米,一个直径10厘米,周长31.4厘米)

师:同学们,学到这里,最初的问题还是问题吗?

生:已经都会了。

师:找同学来说说。

生:圆的周长与圆的直径和半径有关系,直径半径越长,周长越长。

生:圆的周长总是直径的3倍多一些,这个数固定不变,是无限不循环小数,叫做圆周率,用字母∏来表示。

生:∏取近似值是3.14。

生:圆的周长等于直径乘圆周率,周长用字母c来表示,字母形式是c=∏d或c=2∏r

生:测量圆的周长有绕线法、滚动法等等。

生:我们现在如果知道直径或半径就能求出圆的周长,知道圆的周长也可以求出直径或半径来。

师:你真会学习,能够举一反三的看问题,我们要向你学习。同学们已经了解了很多有关于圆的周长的知识,现在拿出你们的作业纸,认真审题时候再做。开始吧!

师:老师看同学们大部分题做得很好,很认真,少部分题上理解有偏差,让我们一起看看大屏幕,(屏幕抽出2道题目)说说你对这道题的理解。

师:同学们理解的很到位,做题时一定要认真审题,不能马虎,好,没有做完的同学利用自习课时间再做,接下来我们一起看看圆在生活中的应用。(播放圆的应用)

师:圆象征着团圆,圆圆满满,一个个美丽的圆奇妙的组合在一起,装点着我们的生活,在生活中,有许多成语里也有圆,同学们课下搜集一下,看看谁找的更多。老师也希望同学们在今后的学习生活中能够收获满园。

《圆的周长》教案 篇8

课题圆的周长课型新授

内容义务教育课程标准实验教科书(北师大版)第十一册第11-13页

教学目标

1、认识圆的周长,能用滚动、绕线等方法测量圆的周长。

2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义及圆周 长的计算方法。

3、能正确地计算圆的周长,能运用圆周长的知识解决一些简单的实际问题。

重点1、探索圆的周长与直径的关系,理解圆周率的意义;

2、计算圆的周长

难点灵活运用公式解决实际问题

教学设计

一、创设情境,教学认识圆的周长

1、出示两个圆镜图,直径分别为5厘米和8厘米)

师:要用不锈钢条来给两面圆形的镜子镶边框,哪面镜子的边框长呢?为什么?

(感受圆的直径与周长有关系)

师:揭示周长的含义,并让学生摸一摸。

师:圆镜的周长是多少厘米呢?你有什么办法来进行测量?

(1)小组合作,想办法测量圆的周长。

(2)将各种方法进行展示和评议

二、探索研究:圆的周长与直径的关系

师:根据大家的操作,你们发现圆的周长与它的什么有关呢?有什么关系呢?

师:你将怎么样研究圆的周长与圆的直径的关系?

(1)小组合作,分别测量4个不同直径的圆,它们的直径与周长分别是多少,并填写入书中的表格内。

(2)展示结果,你发现了什么?

(3)认识圆周率

(4)用公式表示圆的周长与直径的关系,同时推导出周长与半径的关系。

(5)用计算的方法求两个圆镜的周长。

三、练习巩固

1、做书上第12页1、2题

2、指导做书13页第3、4、5题

四、实践活动

课后自由组成小组,想办法测出一棵大树树干的横截面的直径是多少。

五、课后思考

书上13页的“数学故事”

板书设计:

圆的周长

量一量,算一算:(根据学生的汇报填写)

圆的周长

圆的直径

圆的周长除以直径的商(结果保留两位小数)

发现:圆的周长总是直径的三倍多一些。

圆的周长除以直径的商是一个固定的数,我们把它叫作圆周率,用字母丌表示。

c=丌d 或 c=2丌r

一键复制全文保存为WORD
相关文章