六年级数学下册教案优秀24篇

在数学课上六年级数学老师可以让学生通过自主的学习,谈谈自己的理解和感悟。每个六年级数学老师在教学之前都应该写六年级数学教案。你是否在找正准备撰写“六年级数学下册教案”,

小学六年级数学下册教案 1

教学内容:

教材第78页例9、例10、做一做,练习十五第8、9题。

教学目标:

1、进一步掌握解决问题的主要步骤,形成解决问题的一些策略、方法。

2、经历交流、讨论、练习等学习方法,发展应用意识,形成解决问题的一些策略、方法

3、发展应用意识,形成解决问题的一些策略、方法,愿意对数学问题进行讨论,提高分析问题和解决问题的能力

教学重点:

掌握解决问题的主要步骤,形成解决问题的。一些策略、方法。

教学难点:

提高分析问题和解决问题的能力。

教具准备:

多媒体课件。

教学过程:

一、谈话引入

通过计算可以帮助我们解决许多实际问题,这节课我们一 起复习解决问题。(出示课题 )

二、解决问题

1、解决问题的主要步骤

(1)出示例9

(2)学生交流、讨论。

(3)汇报

①认真读题,理解题意;

②分析题目中的数量关系;

③判断解决问题的方法,列出算式;

④计算;

⑤验算。

2、出示例10

(1)认真读题,弄清题意。

(2)分析数量关系。

①这里的 表示什么?

( )表示把六(1)班作品平均分成4份,六(2)班的作品比个

六(1) 班多其中的1份)

看懂线段图,并会画线段图表示数量关系。

六(1)班

32件 比六(1)多 ?件

六(2)班

六(2)班作品是六(1)班的几分之几?

(六(2)班的作品是六(1)班的1+ )

求六(2)班交了多少件作品,实际是求什么?

(实际是求六(1)班的1+ 是多少,也就是求32件作品的1+ 是多少。

求一个数的几分之几是多少,用什么方法计算?请列出算式,并计算结果。

三、巩固练习

1、完成教材第78页做一做。

2、练习十五第8、9题。

四、课堂总结

板书设计:

解决问题(一)

①认真读题,理解题意;

②分析题目中的数量关系;

步骤 ③判断解决问题的方法,列出算式;

④计算;

⑤验算。

教学反思

在教学中,以学生为主体,教师为主导,训练为主线。先让学生回忆,重温小学阶段用分数乘、除法计算解决问题有关知识并进行系统整理。让学生进一步掌握简单应用题解题步骤和方法,形成解决问题的一些策略、方法,配合相关的练习题,让学生进行训练,加深学生的理解。发展学生应用意识,提高分析问题和解决问题的能力

数学六年级下册教案 2

教学内容:

教科书30到32页。

教学目标:

1、使学生理解比例尺的意义,并能求出平面图的比例尺和根据比例尺求出实际距离。并能应用解决生活中的实际问题。

2、 通过小组合作研讨、实践操作,培养学生的合作意识和创新思维的能力。

3、 通过教学情境,培养学生热爱祖国的思想感情。

教学过程

一、 导入新课

1、 同学们,今天老师请你们当回设计师,请大家将我们教室占地的平面图画在白纸上。(长8米、宽6米)

2、 请画好的将自己的作品贴在黑板上。有不一样的请你贴上来。

3、 按大小分类。(讨论后说明随意画的长方形不是教室的平面图)

4、 讨论:将这么大的教室画到图上你采用了什么办法?(缩小)。为什么这些图有大有小呢?

5、 分别请同学说说自己画的设想。

6、 在同学们贴上的纸上介绍图上距离、(画在图上的8厘米、6厘米就是图上距离)。实际距离(同学们量出的教室的长8米,宽6米就是实际距离。同学们缩小的倍数就是你这幅图的比例尺。请你写上自己的比例尺。

7、 板书课题。“认识比例尺”

二、 新课展开

1、自学课文

让学生看课本上的第56页,初步接触图上距离和实际距离的比叫做比例尺。比例尺=图上距离比实际距离

说明:我们所缩小的倍数,一般取图上距离与实际距离的比,为计算方便通常把比例尺写成前项是1的比。

改写自己所画的图的比例尺。

2、出示中国地图(投影)

找出这幅地图的比例尺:1:30000000

(电脑演示放大效果)

介绍线段比例尺。你能看懂它的意思吗?与数值比例尺比较。(线段比例尺操作性强的,便于估计)。

你能从地图上大致的估计上海到北京的距离吗?小组讨论、反馈。评价各种计算的方法。板书:图上距离∶比例尺=实际距离

小组反馈,评比优秀方案。

电脑课件演示。

根据讨论板书:

补充板书:

把实际距离按原来的大小画出来,比例尺就是1:1

三、 练习

1|试一试。

四、 作业:31页练一练。

六年级数学下册教案 3

教学目标:

1、结合具体问题,经历认识成反比例关系的量的过程。

2、知道反比例的意义能判断两种量是否成反比例关系,能找出生活中成反比例量的实例,并进行交流。

3、对现实生活中成反比例关系的事物有好奇心,在判断成反比例量的过程中,能进行有条理的思考。

课前准备:

找一本《安徒生童话》,把四个人看书表格画在小黑板上(图用文字),找一张10元人民币。

教学过程:

一、问题情境

1、师:同学们,老师知道你们都喜欢读书,许多同学特别喜欢读童话故事,老师今天带来了一本童话故事书,你们看是什么?

出示《安徒生童话》,可了解一下谁读过这本书。

师:猜一猜,这本书有多少页?

学生猜测,然后实际看一看,说出页数。

师:你们知道吗?我们书中的四个同伴都读过这本书,而且记录下了他们每人读书的情况。请同学们看小黑板。

小黑板出示:亮亮红红聪聪丫丫

每天看的页数12 15 18 20

看的天数15 12 10 9

2、让学生观察统计表,师:观察这个统计表,从表中你了解到哪些信息?

学生可能说出很多,如:

●亮亮每天看12页,看了15天。

●红红每天看15页,看了12天。

●聪聪每天看18页,看了10天。

●丫丫每天看20页,看了9天。

●丫丫看得最快,只用了9天,亮亮看得最慢,用了15天。

二、认识反比例

(一)读书问题

1、师:观察表中的数据,你发现了什么规律?

预设:●每天看的页数越多,看的天数就越少。

●每天看的页数越少,看的天数就越多。

●每天看的页数乘看书的天数,积是一定,都是180。

第三种意见学生没有提出,教师启发:

师:把他们每天看书的页数和看的天数分别乘一下,看发现了什么。(每天看书的页数与看书天数的乘积就是这本书的页数),你们能总结出一个数量关系式吗?根据学生回答,教师随即板书:

每天看的页数×需要的天数=书的总页数(一定)

2、师:谁能用自己的话说一说,当书的总页数一定时,每天看的页数和看的天数之间有什么变化规律?(学生自由发言)

师:在四个同伴看同一本书这件事情中,看书需要的天数是随着每天看书的页数的变化而变化的,每天看的页数扩大,需要的天数就缩小;反之,每天看的页数缩小,需要的天数就扩大。而且,每天看的页数和需要的天数的乘积一定,我们就说每天看的页数和需要的天数这两种量成反比例。

板书:成反比例的量

3、师:像这样两种相关联的量,一种量扩大,另一种量缩小,而且他们的乘积相等的事例,在我们的日常生活中还有许多。下面我们就共同来看一个换零钱的问题。教师出示表格,并拿出一张10元的人民币。

师:老师这有一张10张的人民币,如果要把它换成5元的,能换几张?如果换成1元的呢?那要换成5角的,2角的,1角的呢?

学生说,教师填在表格中。

面值5元1元5角2角1角

张数2 10 20 50 100

师:仔细观察表中数据,你都发现了什么?

学生可能会说:

●换的钱的面值越大,需要的张数就越少;换的面值越小,需要的张数就越多。

●表中面值与张数的积是一定的。

师:你们能总结出这里的数量关系式吗?

学生回答,教师随机板书:

钱的面值×张数=10(元)

4、提出“议一议”的问题,让学生判断并得出零钱的面值与换的张数这两种量是否成反比例。

学生可能会说:

●10元钱是一定的,钱的面值和换的张数是变化的,钱的面值变大,钱的张数就变小;钱的面值变小,张数就变大。

●钱的总数是一定的,钱的面值与换的张数是是变化的,钱的面值越大,换的张数就越小。反之,钱的面值越小,钱的张数就越多。

师:通过看书的事情,我们知道了什么样的两个量叫反比例,现在老师提一个问题:零钱的面值与换的张数这两种量成反比例吗?为什么?和同桌说一说。

学生讨论后,多请几人发言。

5、师:现在请同学们分析一下上面的两个例子和数量关系式,你发现它们有什么共同点?

学生可能会说:

●它们都是乘积一定,一个量变大,另一个量变小。

师:像上面这样两种相关联的量,一种量变化,另一种量也随着变化,如果两种量相对应的积也一定,就说这两种量成反比例,这两种量就叫做成反比例的量。它们的关� 这段话在课本第13页,请同学们自己读一读。

学生自己读书。

6、师:我们已经知道了什么叫成反比例关系的量,谁来说一说,成反比例的量需要具备什么条件?

学生可能会说:

●是两个相关联的量。

●这个量的乘积一定。

●一个量变大,另一个就变小;一个量变小,另一个就变大。

三、尝试应用

1、让学生自己判断“试一试”中的三组数量。

师:现在,请同学们看“试一试”,自己判断一下,每题中的两种量是否成反比例。同学们可以互相讨论,要说明判断的理由。

给学生独立思考、交流的时间。

2、师:谁来汇报一下你判断的结果,并说一说判断的依据是什么?

重点让学生一说判断的理由,学生如果有其它说法,只要是对的就给予肯定。

3、师:我们认识了什么叫做反比例关系的量,你能举一个生活中反比例的例子吗?先和同学交流一下。

学生交流,然后指名举例并说明理由。

4、师:同学们,今天我们认识了成反比例关系的量,下面请看练一练第1题,自己判断一下,每题中的两种量是否成反比例,要说明理由。

给学生独立思考,互相交流的时间,说一说是怎样判断的,结论是什么。

学生可能会说:

●乒乓球的总个数一定,就是说每盒装的个数和需要的盒子乘积一定,每盒装的越多,需要的盒子就越少,反之,每盒装的越少,需要的盒子就越多。所以乒乓球总个数一定,每盒装的个数和需要的盒数成反比例。

●全班的总人数一定,男生和女生人数是相关联的两种量,但他们不是相乘的关系。

学生如果有其他说法,只要意思对,就给予肯定。

四、课堂练习

1、练一练第2题,先让学生自己读题并判断,然后指名汇报。

2、练一练第3题,完成表格再判断,交流时说出自己的想法。

3、练一练第4题,先帮助学生理解题,让学生明白大齿轮与小齿轮转数的关系,因为30:10=3,所以大齿轮转一圈,小齿轮转3圈,然后,说明在工业生产中,齿轮转的周数叫转机,让学生填表,并回答问题。

五、知识拓展

介绍成反比例的量可以用方格纸上的图表示,让学生课下自己阅读。

师:在学习正比例的时候,我们知道成正比例关系的量可以在方格纸上画图表示出来,其实成反比例的量也可以在方格纸上画图来表示。请同学们课下自己看一看知识窗里的内容,了解成反比例的量怎样用方格纸上的图表示。

六年级数学下册教案 4

【教学实录】

一、汇报交流,梳理知识

师:课前,老师要求同学们把有关立体形体的知识整理成表格或图。现在,请小组讨论推荐一张表格或图,拿上来给大家介绍一下。

各小组纷纷在实物投影仪上出示自己组整理的表格并向同学介绍。有出现下列图表等情况。

二、贴进生活,模拟应用

1、购买鱼缸的数学问题

师:昨天,老师想去买一个鱼缸,发现有以下几种型号。

尺寸

型号

长(分米)

宽(分米)

高(分米)

1号鱼缸

6

6

6

2号鱼缸

9

6

4.2

3号鱼缸

5

5

7.75

师:请同学们想象一下,当时老师看到的三种鱼缸的形状大致是怎样的?

生:1号鱼缸看起来像一个正方体……

(众生抢着补充:没有上底面。)

生:2号鱼缸像一个扁扁的长方体,没有上底面。

生:3号鱼缸是一个高高的长方体,有点像柱子,也没有上底面。

(众生抢着补充:它的底面是一个正方形。)

师::这样吧,每个小组选画一个鱼缸,然后展示给其他小组看看。

师:工人叔叔在做鱼缸时该如何割玻璃,各种方案需怎样的玻璃?选择一种鱼缸,想一想。

生1:我选1号鱼缸,它只要割5块边长是6分米的正方形玻璃就可以。

生2:2号鱼缸需要的玻璃是:一块长9分米宽6分米的长方形玻璃,二块长9分米宽4.2分米的长方形玻璃和二块长6分米宽4.2分米的长方形玻璃。

生3:3号鱼缸要二种形状的玻璃:一块边长是5分米的正方形玻璃和4块长7.75分米宽5分米的长方形玻璃。

师:观察三个鱼缸,你想知道什么?

生:哪个体积最大?

师:鱼缸装水量是它的容积,如果不计玻璃的厚度,它的体积就是容积。

生:哪个鱼缸用料最少?

师:那就来计算一下它们的容积和用料面积吧,小组合作、分工计算。

反馈如下:

用料面积(平方分米)鱼缸容积(立方分米)

1号鱼缸:6×6×5=180 6×6×6=216

2号鱼缸:9×6+(9×4.2+6×4.2)×2=180 9×6×4.2=226.8

3号鱼缸:5×5+5×7.75×4=180 5×5×7.75=193.75

师:观察上面的数据,你有什么想法或问题?

生问:老师,以前学习的表面积相等时,正方体的体积大。而这里为什么不是这样?哪里不对?

生答:以前学习的表面积相等是在所有面都计算的,今天计算的鱼缸只需计算5个面就不一样了。

师:�

生2:我觉得你选3号比较好,因为它占地面积小。

生3:3号好,因为3号鱼缸比较深,适合习性不同的各种鱼,深水与浅水可养不同的鱼。

生4:1号好,因为它方方正正,既宽阔又比较深,鱼比较容易找到喜欢的深浅之处,那里又相对较宽大。

生5:我劝你不要买3号鱼缸,因为它比较窄小,鱼不好向前游。

生3(迫不及待地说):鱼可以绕着游。

师:大家能独立思考,敢于提出不同的意见都很好,购买时还要考虑房子大小等因素。

2、沙坑用沙中的数学问题

学校在操场边的空地上挖了一个长6米、宽3米、深0.4米的坑,准备装上沙作为沙坑使用。它的旁边有一堆圆锥形的沙,底面周长是12.56米,高1.5米。这堆沙够用吗?(∏的值取3.14)

(学生独立思考,完成后汇报)

生1:这堆沙不够用。因为沙坑的体积是6×3×0.4=7.2(立方米),而这堆沙的半径只有12.56÷3.14÷2=2(米),沙的体积是×3.14×2×2×1.5≈6.28(立方米)。沙不够用。

生2:我有不同意见,我认为这堆沙够用了。因为已经有6.28立方米沙,而沙坑装满沙也仅需7.2立方米,不用装满就可以了。

生1:不装满一些会不安全。

生2:不对,6.28÷(6×3)≈0.35,可见,用6.28立方米沙来装这个沙坑可以装0.35米深了,应该是安全的。而且,在使用中,沙不容易溢到操场上去。

生1:我接受你的意见。

三、综合实践,升华知识

师:我们通过刚才的几个题目复习了长方体、正方体和圆锥的体积计算,学习知识的目的在于为了解决问题。老师这儿有一个铅球,怎样求出这个铅球的体积呢?

(小组讨论,汇报交流)

生1:我们可以先在鱼缸里放一部分水,不能太多,量出水的高度;再将铅球放进水中,再量出水的高度,上升的水的体积就是铅球的体积。

生2:我们组的'方法与他们不同,我们决定用一个大口杯,装满水,再将铅球放进水中,收集溢出的水,用量筒一量就知道铅球的体积。

生3:如果鱼缸很大,这个铅球又这么小,放到水里水面上升很少,会很难测量,就不容易求出铅球的体积了。

生1:对,我们会选择一个大小适宜的鱼缸,或者玻璃口杯也行,用圆柱的体积公式计算。

生4:我们组讨论的结果是设法找到球的体积计算公式,用公式计算。

师:你们的想法都很棒,下面就请同学用自己的方法动手实践,求出这个铅球的体积。老师这里为同学准备了一些工具,可以来借用。

(用公式计算球的体积的那组同学用的是由老师提供的球体积公式:老师建议他们课后通过查找资料进一步搞清球体积公式的获得过程。)

(学生实践后反馈,老师说明测量中有误差,数据略有不同是正常的。)

六年级下册数学教案 5

教学内容:

教科书第67页例2,第68页课堂活动第2题及练习十五3~5题。

教学目标:

1.联系生活情境进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。

2.体会数据对决策的作用,体会统计在现实生活中的应用价值。

教学重点:

进一步了解扇形统计图的特点,会根据扇形统计图前后的变化获取相关的数据和有用的信息。

教学难点:

会根据扇形统计图前后的变化进行对比分析。

教学准备:

教具:多媒体课件。

教学过程:

一、复习引入

教师:扇形统计图有什么特点呢?

教师:今天我们将在以前学习知识的基础上来进一步研究扇形统计图。

板书课题:扇形统计图

二、自主探索,学习新知

1.教学例2

(1)先后出示两个统计图。

先出示第一幅扇形统计图。

教师:从这幅图中我们能获得哪些信息?

根据学生的回答在课件中点出相关部分。

教师:这些都是什么时候的数据?

再出示第二幅扇形统计图。

教师:从这幅图中我们又能获得哪些信息?这些又是什么时候的数据?

教师:耕地、森林、果园的面积各是多少平方千米呢?没有改造的荒山还有多少平方千米?请你们算一算。

将两幅图放在一块观察。

教师:看了这两幅扇形统计图,你想说些什么?看看谁的发现最多,最有价值。

学生先独立思考,然后小组内部交流自己的发现(“退耕还林”前与2006年底相比土地的变化情况)。

(2)进一步了解扇形统计图的作用。

教师:刚才同学们在小组内部互相交流了自己的发现,现在哪位同学能代表你们小组进行发言?

请一两位同学相互补充,找到统计图中发生变化的项目。

小结:对比两幅扇形统计图,同学们强调最多的是有许多项目发生了变化。有没有没发生变化的量呢?(课件重点强调:土地总面积没发生改变)也就是两个圆所代表的都是靠山村的土地总面积。

教师引导:结合我们的发现思考:森林面积的增加与荒山面积的减少会给这个村庄带来怎样的变化?如果你是村委会的领导面对2006年底的统计图你又会作哪些思考?

(3)根据扇形统计图解决问题。

教师:观察扇形统计图,你还能提出并解决哪些数学问题?

学生先独立思考并解答,教师巡视找出典型的问题并进行解析。

2.课堂总结

教师:今天我们学习了什么?(扇形统计图)你又有什么收获?

三、课堂活动

教师:刚才我们分析的两个扇形统计图的圆都代表相同的含义——土地总面积,(课件点出“课堂活动”第2题——改变题目增加两个参数——美国、俄罗斯的面积和人口)现在呢?

教师:仔细观察这些统计图,你有哪些发现?

教师引导:重点分析中国人口多耕地少的基本国情。

教师:面对我国人口多耕地少的局面,你会做哪些思考?

四、练习应用,促进发展

1.完成练习十五第3题

出示题中的两幅扇形统计图,引导学生对比。

(1)从两幅统计图中,你获得了哪些信息?

(2)算一算:从1996年到2006年,工业用地、居住用地、绿化用地分别增加或减少了多少平方千米?

学生独立计算,教师巡视,抽几个学生上台板演,集体评议。

(3)议一议:你对这种变化有什么看法?

2.完成练习十五第4,5题

六年级下册数学教案 6

教学目标:

1.使学生加深对直线、射线和线段特征的认识,进一步理解它们之间的关系,丰富对角的概念的理解,完善认知结构。

2.使学生进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。

教学重点:

使学生加深对直线、射线和线段、角等特征的认识,进一步理解它们之间的关系。

教学难点:

用量角器量角、画角,理解垂直与平行的`关系,画垂线

教学过程:

一、知识梳理,形成网络

1.提出要求

①分别画一条直线、一条射线和一条线段。

②看图说说直线、射线和线段的相同点和不同点。

③说说直线、射线和线段的关系。

④在纸上画出两条直线

2.根据学生的回答小结

同一平面内两条直线的关系,并板书。

a相交(当两条直线相交成相交直角时,这两条直线互相垂直)

b不相交(当两条直线不相交时这两条直线互相平行)

二、巩固练习,反馈校正

完成教科书第100页“练习十九”

1.完成第2题:让学生列举生活中的事例先分小组说,再全班交流

2.完成第3题:先让学生观察图形,再独立思考,最后指导学生用两点决定一条直线的知识说明。

3.完成第4题:先让学生讨论:通过一个点可以画多少条直线?通过两个点呢?再指导学生用两点之间的连线最短的知识说明

4.完成第5题:指导学生说思考过程时,师着重指出:因为从直线外的一点到直线的所有线段中,垂直的线段是最短的,因此从A或B点出发,连通主管道的小管道应该与主管道相应部分垂直。最后让学生独立操作。

三、拓展延伸,整理反思

1.师提问:我们学过哪些角?你能填写下表吗?学生独立做好后全班交流。

2.师让学生用活动角演示上面的各种角,引导学生进一步思考:角的大小与什么有关?学生讨论后,师小结:角的大小与两条边叉开的大小有关。

3.完成教科书第101页“练习十九”第6题学生独立填后反馈校对。

4.画角、量角器量角

(1)让学生说一说用量角器量角的方法。

(2)师让学生尝试画45度和135度的角各一个,在用量角器量,并让学生对比,这两个角画时和量时有什么不同?要注意什么?

(3)完成教科书第101页“练习十九”第7题

四、全课总结

通过这一课的学习你学到了什么?还有什么不懂?

数学教案 7

教学目标:

1、引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2、使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3、结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

教学重、难点:

负数的意义。

教学过程:

一、谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

二、教学新知

1、表示相反意义的量。

(1)引入实例。

谈话:如果沿着刚才的话题继续"聊"下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

① 六年级上学期转来6人,本学期转走6人。

② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

④ 一个蓄水池夏季水位上升 米,冬季水位下降 米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组"相反意义的量"。(补充板书:相反意义的量。)

(2)尝试。

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法。

……

(3)展示交流。

……

2、认识正、负数。

(1)引入正、负数。

谈话:刚才,有同学在6的前面写上"+"表示转来6人,添上"-"表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

介绍:像"-6"这样的数叫负数(板书:负数);这个数读作:负六。

"-",在这里有了新的意义和作用,叫"负号"。"+"是正号。

像"+6"是一个正数,读作:正六。我们可以在6的前面加上"+",也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试。

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3、联系实际,加深认识。

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

① 同桌交流。

② 全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:… …)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4、进一步认识"0"。

(1)看一看、读一读。

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

哈尔滨: -15 ℃~-3 ℃

北京: -5 ℃~5 ℃

深圳: 12 ℃~23 ℃

温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说。

我们来看首都北京当天的温度,"-5 ℃"读作:"负五摄氏度"或"负五度",表示零下5度;5 ℃又表示什么?

你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

你能很快找到12 ℃、-3 ℃吗?

(3)提升认识。

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

"0"是正数,还是负数呢?

在学生发言的基础上,强调:"0"作为正数和负数的分界点,它既不是正数也不是负数。

(4)总结归纳。

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对"数"进行重新分类:

(完善板书。)

5、练一练。

读一读,填一填。(练习一第1题。)

6、出示课题。

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

7、负数的历史。

(1)介绍。

其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):

"中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学着作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:'两算得失相反,要令正负以名之。'古代用算筹表示数,这句话的意思是:'两种得失相反的数,分别叫做正数和负数。'并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!"

(2)交流。

简单了解了负数的历史,你有什么感受?

三、练习应用

今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

课件逐一出示:

1、表示海拔高度。("做一做"第2题。)

通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。

2、表示温度。(练习一第2题。)

月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。

3、(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?

4、表示时间。(练习一第3题。)

5、

"净含量:10±0.1kg"表示什么意思?

四、总结延伸

1、学生交流收获。

2、总结。

简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。

六年级下册数学教案 8

教学目标:

1、在熟悉的生活情境中,了解负数的意义,会读写负数。

2、会用负数表示一些日常生活中的量,体验数学的应用价值。

3、在认识负数和应用负数解决问题的过程中获得成功的体验,坚定学好数学的信心。

教学重点:

巩固对负数的认识。

教学难点:

掌握正负数表示相反意义的量。

教具准备:

多媒体课件

教学方法

自学教材、整理梳理、巩固练习

教学过程:

一、梳理知识。

1、认真看课本第87页到91页的内容,回忆整理有关负数的知识

(1)举例说明如何读写正负数?在书写正数和负数时应注意些什么?

(2)为什么0既不是正数也不是负数?正数都____0;负数都_____0。

(3)正数负数表示什么样的两种量?你能举出生活中的例子吗?

2、4分钟后,对子之间相互交流,如用疑问可以小组讨论!

3、小结:我们把像+3、+15、+8844.43……等这样的数叫做正数;像-6、,-10,-155……等这样的数叫做负数。0小于一切正数,大于一切负数,0是正、负数的分界点。0既不是正数,也不是负数。

正数、负数表示意义相反的两种量。

二、基础练习。

1、展示一

(1)如果前进30m记作+30m,那么-20m表示( ),后退10m记作( )。

(2)如果+60m表示上升60m,那么-60m表示( ),下降50m记作( )。

(3)如果+120m表示向东行120m,那么-70m表示(),向西行50m记作( )。

要求:1、独立做题,。

2、写完的同学对子之间相互检查

3、展示二

(1)读一读,填一填。

37,-78,+20,-5,0,+121, 98, -1000, -13, 34, -34。

负数 正数

最后剩下一个数没有填入上面的框中,这个数是( ) 。

(2)六年级3个班进行智力抢答赛,答对1题得10分,答错1题扣10分,不答题得0分。已知一班答对1题,二班答错1题,三班对、错各1题,请写出这3个班的得分情况。

一班( )分 二班( )分 三班( )分

三、提高练习。

(一)填一填

1、如果向南行50m记作-50m,那么向北行45m记作( ),-45m表示( )。

2、如果支出180元记作-180元,那么收入800元记作( ),-200元表示( )。

3、如果逆时针旋转28°记作+28°,那么顺时针旋转16°记作( ),+16°表示( )。

(二)做一做

1、同学们利用休息日帮助果农采摘苹果,从4棵苹果树上摘下的苹果分别放成4堆。果农王大伯估计每棵树可产苹果100kg,同学们以此估计数为标准,超过的千克数记为正数,不足的千克数记为负数。

(1)这4堆苹果共重多少千克?

(2)这4堆苹果平均每堆重多少千克?与王大伯的估计数比较,结果用正、负数表示。

2、一个小组8名同学的身高如下表

(1)算出8人的平均身高。

(2)如果把平均身高记为0,用正、负数表示每位同学的身高。

(3)上表中与平均身高相差为0cm,表示( );与平均身高相差为正数,表示( );与平均身高相差为负数,表示( )。

同桌讨论,集体讲评后,学生独立完成,

四、课堂小结

同学们,这节课我们收获了什么?还有什么问题?

五、课堂作业

家庭作业

板书设计:

负数的初步认识整理与复习

像+3、+15、+8844.43……等这样的数叫做正数;

像-6、,-10,-155……等这样的数叫做负数。

0小于一切正数,大于一切负数,0是正、负数的分界点。

0既不是正数,也不是负数。正数、负数表示意义相反的两种量。

苏教版六年级数学下册教案 9

教学目标

1.结合丰富的实例,认识反比例。

2.能根据反比例的意义,判断两个相关联的量是不是成反比例。

3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

教学重点

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学难点

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程

一、复习

1.什么是正比例的量?

2.判断下面各题中的两种量是否成正比例?为什么?

(1)工作效率一定,工作时间和工作总量。

(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

(3)正方形的边长和它的面积。

二、导入新课

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

三、进行新课

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

同桌交流,用自己的语言表达。

写出关系式:速度×时间=路程(一定)

观察思考并用自己的语言描述变化关系乘积(路程)一定。

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。

写出关系式:每杯果汁量×杯数=果汗总量(一定)

以上两个情境中有什么共同点?

4.反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

教学内容:

苏教版义务教育课程标准实验教科书第60-61页

教材分析:

在本节课之前,学生们已经基本掌握了“用方向和距离描述、画出相关物体位置和描述简单的行走路线”方法。“实际测量”是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。

“实际测量”的主要内容包括:用工具测量两点间的距离,步测和目测。

在“用工具测量两点间的距离”的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;“步测和目测”的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。

教学目标:

⑴使学生会用工具测量两点间的距离、步测和目测的方法。

⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。

⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。

教学重点:

掌握“用工具测量两点间的距离、步测和目测”的方法。

教学难点:

掌握“用工具测量两点间的距离、步测和目测”的方法。

教学具准备:

卷尺、标杆、50米跑道。

教学流程:

一、揭示课题,明确学习内容。

⑴揭示课题。

板书课题——实际测量。让学生说说对课题的理解。

⑵了解测量工具。

让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。

⑶明确学习内容。

测量地面上相隔较远的两点间的距离;步测和目测。

二、了解测量知识,为实践活动作准备。

⑴测量相隔较远的两点间的距离。

理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。

理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;

观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)

掌握测定直线的步骤:测定直线;分段量出;记录计算。

⑵学习步测的方法。

理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。

掌握步测的方法:用步数×每一步的距离。

理解步测的关键:确定平均步长。

掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。

理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。

⑶学习目测的方法。

观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。

目测较短距离:人书本的长和宽;课桌的长和宽等等;

理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。

三、实践活动。

⑴测定直线。

⑵确定平均步长。

⑶步测篮球场的长和宽。

⑷目测教学楼的长度。

第三单元分数除法

第10课时按比例分配的实际问题

教学内容:

课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。

教学目标:

1、使学生理解按比例分配实际问题的意义。

2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。

教学重难点:

理解按比例分配实际问题的意义,掌握解题的关键。

课前准备:

课件

教学过程:

一、创设情境、引入新知

根据信息填空:

(1)男生有31人,女生有21人,男生人数是女生人数的。

(2)红花的朵数与黄花朵数的比是3:2。你能联想到什么?

师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。

二、探究新知

1、出示例11中的实物图及例题。

(1)让学生阅读题目后说说你知道哪些信息?

(2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:

①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;

②红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。

③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。

师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。

学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?

说说你是怎样做的?

方法一:3+2=530÷5×330÷5×2

方法二:30×3/530×2/5

2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?

说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)

如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)

3、完成练一练第1题。

4、完成试一试。

出示试一试。

提问:“按各小组人数的比分配”是什么意思?你想到了什么?

5、归纳(讨论)。

(1)比较例题与试一试题目在解答方法上有什么共同特点?

(2)怎么解答?

求总份数,各部分量占总数量的几分之几,最后求各部分量。

(3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)

三、应用比的知识解决实际问题

1、练一练第2题。

独立完成后进行交流

指出:把180块巧克力按照三个班的人数来分配,就是按怎样的`比进行分配?

2、练一练第3题。

独立填表,完成后集体核对。

3、练习十第1题。

四、课堂总结

这节课学过以后,你有什么收获?

五、布置作业:

练习十第2、3题。

教学反思:

教学过程:

(一)导引探究,由表及里

教学例1,认识成正比例的量。

1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。

时间(时)123456……路程(千米)80160240320400480……

在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)

2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。

3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。

4.让学生根据板书完整地说一说表中路程和时间成什么关系。

[数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]

(二)自主探究,尝试归纳

出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?

速度(千米/时)406080100120……时间(时)3020151210……

1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?

2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。

3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。

[从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的形成过程。]

(三)对比探究,把握本质规律

1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。

多媒体呈现:

例1路程/时间=速度(一定)

路程和时间成正比例

例2速度×时间;路程(一定)

速度和时间成反比例

2.探究活动。

(1)让学生仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。

(2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。

[例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定”还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]

(3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。

启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?

根据学生的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。

[概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]

3.组织对比性练习。

(1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:

表1

数量/本2030405060……总价/元3045607590……

表2

单价/元1。52456……数量/本4030151210……

在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!

在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。

[将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]

(2)成比例与不成比例的对比练习。

下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?

①圆的直径和周长。

②小麦每公顷产量一定,小麦的公顷数和总产量。

③书的总页数一定,已经看的页数和未看的页数。

[这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解,才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]

(3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。

[举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系。

六年级下册数学教案 10

教材分析

现实世界中存在着许多具有相反方向的量,或某种量的增大和减小,也可用这种量的某一状态为标准,把它们看作是向两个方向变化的量。要确切地表示这种具有相反方向的量,仅仅运用原有数(自然数和分数)是不够的,还必须把这两个互为相反的方向表示出来,于是产生了正数和负数。数从表示数量的多少到不但表示数量的多少,还表示相反方向的量,是数的一个飞跃发展。正数和负数的学习过去安排在中学有理数中学习,本课教材所处的位置,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。通过负数的认识,使学生明白“数”不仅包括正的,还有负的,从而使学生对数的概念形成一个完善、系统的知识结构,为今后进一步的学习打下基础。所以说,本单元是在学生已经认识了自然数,并初步认识了分数、小数的基础上进行学习的,负数的引入是数系的。一次扩展,为今后学习实数奠定了基础。通过学习,可以适当拓宽学生对数学的认识,并对学生进一步理解有理数的意义以及进行有理数的运算打下了基础。因此,本单元的内容具有承上启下的作用,要使学生切实地学好。

学情分析

负数切实存在于人们的生活中,尤其是在“天气预报”和存折上的“支出存入”情况中,学生在日常生活中的经验储备比较丰富,为本单元的学习奠定了基础。同时,学生已经认识了自然数、分数和小数,对于理解正、负数和0之间的关系做了准备。

教学要求

1、在熟悉的生活情境中经历认识负数的过程,了解负数的意义,会用负数表示一些日常生活中的问题。

2、能对现实生活中有关负数的数学信息作出合理解释。

3、能用负数描述并解决一些现实世界中的简单问题,能表达解决问题的过程,并尝试解释所得的结果。

4、对现实生活中与负数有关的事物具有好奇心,感受负数与生活的密切联系,认识到生活中许多实际问题都可以借助负数来表达和交流。

教学建议

1、通过丰富多彩的生活情境,加深学生对负数的认识。要通过丰富多彩的生活实例,激发学习兴趣,感受负数存在的必要性。通过两种相反意义的量的对比,初步建立负数概念。培养学生用数学眼光观察生活,感受数学在实际生活中的广泛应用。

2、把握好教学要求。作为过渡,小学阶段只要求小学生初步认识负数,能在具体情境中理解负数,初步建立负数的概念。教学中,不出现正、负数的数学定义,而只是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正、负数。关于数轴的认识,没有出现严格的定义。

课时安排

1负数的初步认识及读、写1课时2用数轴表示正、负数1课时

1、负数的初步认识及读、写

第一课时

教学内容

负数的初步认识及读、写教材第2~4页。

教学目标

1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的必要和方便。知道正数和负数的读法和写法,知道0既不是正数,也不是负数。正数都大于0,负数都小于0。

2、培养学生在实际生活中应用数学的能力。

3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。

重点难点

重点:初步理解负数的意义,认识负数。难点:理解0既不是正数,也不是负数。教具学具课件。

教学过程

师:同学们,我们首先一起来做一个小游戏,游戏的名字叫“截然相反”。要求

根据老师的语言,说一句相反的话。有兴趣吗?

师生开始做游戏,如“上——下”;“向前走2步——向后退2步”;“运进2吨——运出2吨”,等等。

师:如果你是管理员,需要记录物品的进出情况,你能用自己喜欢的方式记录“运进2吨——运出2吨”吗?比比谁记录得既简洁又准确。

学生可能出现的情况有:

?用符号“??”“?”或相反方向的箭头表示。?用笑脸和哭脸表示。?用正、负数表示。 ……

只要学生选取的表示方法合理,能正确表示意义相反的量,教师就要给予肯定。如果学生答案出现正、负数表示的情况,可以借此直接引入新课:“同学们,这就是负数。今天我们就一起来认识负数。”如果学生的答案中没有出现正、负数情况,教师就要谈话引入新课。

师:同学们,你们知道人们一般用什么方法简洁而准确地表示这样的具有相反意义的量吗?我们一起来看看生活中的例子。

【设计意图:借助游戏热身,导入新课,既活跃了课堂气氛,拉近了教师和学生的距离,又与所学的负数有直接的联系,能迅速地把学生带入到“相反”的意义中,为负数的学习做好铺垫】

1、教学例1。

师:下面是 黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

(2)交流。

简单了解了负数的历史,你有什么感受?

三、练习应用:

今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

课件逐一出示:

1.表示海拔高度。(“做一做”第2题。)

通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。

2.表示温度。(练习一第2题。)

月球表面白天的平均温度是零上126℃,记作_________℃,夜间的平均温度为零下150℃,记作_____________℃。

3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?

4.表示时间。(练习一第3题。)

“净含量:10±0.1kg”表示什么意思?

四、总结延伸

1.学生交流收获。

2.总结。简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。

课后作业:1.完成数练第1页。

六年级下册数学教案 11

教学目标:

1、使学生结合具体情景,继续学习用分数乘法解决求“一个数的几分之几

是多少”的简单实际问题,丰富对用分数表示的数量关系的认识,拓展对分数乘法意义的理解。

2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

教学重难点:

分数乘法的意义以及计算方法。

课前准备:

多媒体课件

教学过程:

一、教学导入

出示例3中的条形图。

问:从图中你能知道什么?

引导学生用分数描述图中的数量关系。

如:把黄花看作单位“1”,红花是黄花的11/10,绿花是黄花的6/10(3/5);把红花看作单位“1”,黄花是红花的'10/11,绿花是红花的6/11等。

二、组织探究

1、教学例3。

出示题目:黄花有50朵,(1)红花比黄花多1/10,红花比黄花多多少朵?

引导学生看图思考:红花比黄花多的朵数是图中的哪个部分?它是那种花朵数的1/10?也就是多少朵的1/10?

追问:50朵的1/10是什么?指出:“红花比黄花多1/10 “,是把黄花朵数看作单位”1“,也就是红花比黄花多的朵数是50朵的1/10 。

指名列式。

问:列式时是怎样想的?

学生完成计算。

2、学第(2)小题。

出示:绿花比黄花少2/5,绿花比黄花少多少朵?

学生尝试解答,指名板演。

追问:绿花比黄花少2/5这个条件中,要把哪个数量看作单位”1“?要求”绿花比黄花少多少朵“,就是求多少朵的2/5?

反思:�

3、做”练一练“

学生独立完成。对有困难的学生,提示可以先按要求画一画,再完成填空。

三、巩固训练

1、做练习五第10题。

先说出每个分数的意义,再把数量关系写完整。

2、做练习五第11、12题

独立解答,交流思考过程,集体订正

四、课堂总结

通过本节课的学习,你有什么收获?你在今天课堂上的表现怎样?

五、布置作业

练习五第13-15题。

教学反思:

通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。

3、练习五第6、7题。

四、课堂总结

本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

五、布置作业

练习五第8、9题。

教学反思:

六年级数学下册教案 12

教材简析:

本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。例4是圆柱的体计算公式的直接运用,是圆柱体积计算的基本,但这题又给学生设置了单位不统一的障碍,让学生在直接应用公式计算的同时注意计量单位的统一。例5是圆柱体积计算公式的扩展练习,意在让学生加深理解容积的概念,使之明确求水桶的容积就是求水桶内部的体积。例5除了在意义上扩展外,公式的运用中也有加深,水桶的底面积没有直接给出,因此要先求出水桶的底面积,再求出水桶的体积。

教学目的:

1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

2.会用圆柱的体积计算圆柱形物体的体积和容积。

3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

4.借助实物演示,培养学生抽象、概括的思维能力。

教 具:圆柱体、长方体彩图各一张,圆柱的体积公式演示教具。

学 具:小刀,用土豆做成的一个圆柱体。

教学过程:

一、复习铺垫

1.说说长方体的体积计算公式,正方体的体积计算公式,把这两个体积公式统一成一个又是怎样的?这个公式计算体积的物体有什么特征?

2.指出圆柱各部分的名称。说一说圆柱有多少条高?有几个底面?每个1自由的面积如何计算?这个计算公式是怎样推导出来的?

二、设疑揭题

我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

[评析:复习抓住教学重点,瞄准学习新知识所必须的旧知识,、旧方法进行铺垫,沟通了知识之间的内在联系,衔接自然。新课引入教师引出了学习新知识的思路,导出了解决问题的方法,从而调动了学生学习的积极性,激发了学生探求新知识的欲望。

三、新课教学

1.探究推导圆柱的体积计算公式。

(l)自学第43页第二自然段,然后按照书中要求,两人一组将于中的圆柱切开拼一拼,再说一说你拼成三个近似什么形状的立方体?

(2)请学生演示教具,学生边演示边讲解切割拼合过程。

(3)根据学生讲解,出示圆柱和长方体的彩图。

(4)学生观察两个立体图,找出两图之间有哪些部分是相等的?

(5)依据长方体的体积计算公式推导出圆柱的体积计算公式。板书:V=sh

(6)要用这个公式计算圆柱的体积必须知道什么条件?

[评析:在教学中充分让学生动手、动脑、动口,让学生在操作中感知,在观察中理解,在比较中归纳。教师的导、放、扶层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力]

2.教学例4

(1)出示例4。

(2)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?谁愿意试一试?

(3)请一名同学板演,其余同学在作业本上做。

(4)板演的同学讲解自己的解题方法,说一说在做这道题的过程中遇到了什么问题,是怎样解决的?

(5)教师归纳学生所用的解题方法。强调在解题的过程中要注意单位统一。

3.教学例5

(1)请同学们想一想,如果已知圆柱底面的半径r t和高h,怎样求圆柱的体积?请学生自学并填写第44页第一自然段的空白部分。

(2)出示例5,指名读题。请同学们思考解题方法。

(3)请学生讲解题思路讨论、归纳统一的解题方法。

(4)让学生按讨论的方法做例5。

(5)教师评讲、总结方法。

(6)学生讨论。比较例4、例5有哪些相同和不同点。

[评析:引导学生通过实际操作,由观察、分析、比较,再进行计算,达到运用新知、巩固新知的目的。]

四、新知应用

1.做第44页下面做一做的题目。两人板演,其余在自己作业本主做,做完后及时反馈练习中出现的错误,并加以评讲。

2.刚才同学们在做例4时,还有下面几种解法,请大家仔细思考,这些解法是对还是错?试说明理由。

(1)V=sh=5O2.1=105

答:它的体积是105立方厘米

(2)2.l米=210厘米

V=sh=50210=10500

答:它的体积是10500立方厘米。

(3)50立方厘米=0.5立方米

V=sh=0.52.1=1.05(立方米)

答:它的体积是l.05立方米。

(4)50平方厘米=0.005平方米。

V=0。00521=0.01051

答:它的体积是0.01051(立方米)。

五、全课总结

问:这节课里我们学到了哪些知识?根据学生回答教师总结。

六、学生作业

练习十一的第l 、2题。

[总结实:本节课的教学体现了三个主要特点:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生操作、观察、思考、说理,调动多种感观参与学习;三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。总之,本节课教师引导得法,学生学得灵活,体现了重在思,贵在导,导思结合的原则,体现了教是为了不教,学会是为了会学的素质教育思想]

一键复制全文保存为WORD
相关文章