基础扎实一点点,通过考试就会更容易一点点。那么关于七年级数学的知识点有哪些呢?以下是编辑给大伙儿找到的初一数学知识点总结归纳优秀4篇,希望对大家有一些参考价值。
1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2、系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.
3、多项式:几个单项式的和叫多项式。
4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5、常数项:不含字母的项叫做常数项。
6、多项式的排列
(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7、多项式的排列时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:
单项式和多项式统称为整式。
8、多项式的加法:
多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9、同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10、合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
11、掌握同类项的概念时注意:
(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:
①所含字母相同。
②相同字母的次数也相同。
(2)同类项与系数无关,与字母排列的顺序也无关。
(3)所有常数项都是同类项。
第一章整式的运算
一、单项式、单项式的次数:
只含有数字与字母的积的代数式叫做单项式。单独的一个数或一个字母也是单项式。一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式
1、多项式、多项式的次数、项
几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:
整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:
1、同底数幂的乘法:
2、幂的乘方:
3、积的乘方:
4、同底数幂的除法:
六、零指数幂和负整数指数幂:
1、零指数幂:
2、负整数指数幂:
七、整式的乘除法:
1、单项式乘以单项式:
法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:
法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:
单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
5、多项式除以单项式:
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
八、整式乘法公式:
1、平方差公式:
2、完全平方公式:
第二章平行线与相交线
一、余角和补角:
1、余角:
定义:如果两个角的和是直角,那么称这两个角互为余角。性质:同角或等角的余角相等。2、补角:
定义:如果两个角的和是平角,那么称这两个角互为补角。
性质:同角或等角的补角相等。
二、对顶角:
我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。
对顶角的性质:对顶角相等。
三、同位角、内错角、同旁内角:
直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的。两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。
四、平行线的判定:
1、两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
2、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
3、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
(2)在同一平面内,垂直于同一条直线的两直线平行。(3)平行线的定义。
五、平行线的性质:
(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。
六、尺规作图:
1、作一条线段等于已知线段。2、作一个角等于已知角。
第三章生活中的数据
一、科学记数法:
一般地,一个绝对值较小的数可以表示成a10的形式,其中1a10,n是负整数。
二、近似数和有效数字:
1、近似数:
利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。
2、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个近似数的有效数字。
三、形象统计图:
第四章概率
一、事件发生的可能性;
人们通常用1(或100)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。
二、游戏是否公平:
游戏对双方公平是指双方获胜的可能性相同。三、摸到红球的概率:1、概率的意义
P(摸到红球=
摸到红球可能出现的结果数
摸出一球可能出现的结果数2、确定事件和不确定事件的概率:
(1)必然事件发生的概率为1记作P(必然事件)=1(2)不可能事件发生的概率为0,P(不可能事件)=0(3)如果A为不确定事件,那么0
(2)三角形按角分类:
直角三角形(有一个角为直角的三角形)
三角形锐角三角形(三个角都是锐角的三角形)斜三角形
钝角三角形(有一个角为钝角的三角形)
把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。
7、三角形的三种重要线段:(1)三角形的角平分线:
定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。交点在三角形的内部。(2)三角形的中线:
定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。性质:三角形的三条中线交于一点,交点在三角形的内部。(3)三角形的高线:
定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;
8、三角形的面积:
三角形的面积=
1×底×高2二、全等图形:
定义:能够完全重合的两个图形叫做全等图形。性质:全等图形的形状和大小都相同。三、全等三角形
1、全等三角形及有关概念:
能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、全等三角形的表示:
全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形的性质:全等三角形的对应边相等,对应角相等。4、三角形全等的判定:
(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
第六章变量之间的关系
1、变量、自变量、因变量:2、函数的三种表示法:
(1)关系式法(2)列表法
(3)图像法
第五章生活中的轴对称
一、轴对称
1、轴对称图形:
如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称:
对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。
3、性质:
(1)对应点所连的线段被对称轴垂直平分
(2)对应线段相等,对应角相等。
二、角平分线的性质:
角平分线上的点到这个角的两边的距离相等。
三、线段的垂直平分线(简称中垂线):
定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
四、等腰三角形
1、等腰三角形:有两条边相等的三角形叫做等腰三角形。
2、等腰三角形的性质:
(1)等腰三角形的两个底角相等
(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),
(3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。
3、等腰三角形的判定:
(1)有两条边相等的三角形是等腰三角形。
(2)如果一个三角形有两个角相等,那么它们所对的边也相等
五、等边三角形:
1、等边三角形:三边都相等的三角形叫做等边三角形。
2、等边三角形的性质:
(1)具有等腰三角形的所有性质。
(2)等边三角形的各个角都相等,并且每个角都等于60°。
3、等边三角形的判定
(1)三边都相等的三角形是等边三角形。
(2)三个角都相等的三角形是等边三角形
(3)有一个角是60°的等腰三角形是等边三角形。
一、代数式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式
1、单项式:
(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式
(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列
(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:
(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
图形的初步认识
一、立体图形与平面图形
1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
2、长方形、正方形、三角形、圆等都是平面图形。
3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
二、点和线
1、经过两点有一条直线,并且只有一条直线。
2、两点之间线段最短。
3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
4、把线段向一方无限延伸所形成的图形叫做射线。
三、角
1、角是由两条有公共端点的射线组成的图形。
2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。
3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。
四、角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
五、余角和补角
1、如果两个角的和等于90(直角),就说这两个角互为余角。
2、如果两个角的和等于180(平角),就说这两个角互为补角。
3、等角的补角相等。
4、等角的余角相等。
六、相交线
1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
2、注意:
⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
3、画已知直线的垂线有无数条。
4、过一点有且只有一条直线与已知直线垂直。
5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。 对顶角相等。
七、平行线
1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、 判定两条直线平行的方法:
(1) 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
(2) 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
(3) 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5、平行线的性质
(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
(2) 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
(3) 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
初一数学上册重点知识整理
初一下册知识点总结
1、同底数幂的乘法:am?an=am+n ,底数不变,指数相加。
2、同底数幂的除法:am÷an=am-n ,底数不变,指数相减。
3、幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。
4、零指数与负指数公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。
5、(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;
② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6、配方:
(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;
※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。
注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;
系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
8、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;
多项式里,次数最高项的次数叫多项式的次数;
注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。
9、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
10、合并同类项法则:系数相加,字母与字母的指数不变。
11、去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
平面几何部分
1、补角重要性质:同角或等角的补角相等。
余角重要性质:同角或等角的余角相等。
2、①直线公理:过两点有且只有一条直线。
线段公理:两点之间线段最短。
②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短。
比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米。
3、三角形的内角和等于180
三角形的一个外角等于与它不相邻的两个内角的和
三角形的一个外角大于与它不相邻的任何一个内角
4、n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形
5、n边形的内角和公式:180(n-2); 多边形的外角和等于360
6、判断三条线段能否组成三角形:
①a+b>c(a b为最短的两条线段)②a-b
7、第三边取值范围:
a-b 8、对应周长取值范围: 若两边分别为a,b则周长的取值范围是 2a 如两边分别为5和7则周长的取值范围是 14 9、相关命题: (1) 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。 (2) 锐角三角形中最大的锐角的取值范围是60≤X<90 。最大锐角不小于60度。 (3)任意一个三角形两角平分线的夹角=90+第三角的一半。 (4) 钝角三角形有两条高在外部。 (5) 全等图形的大小(面积、周长)、形状都相同。 (6) 面积相等的两个三角形不一定是全等图形。 (7) 三角形具有稳定性。 (8) 角平分线到角的两边距离相等。 (9)有一个角是60的等腰三角形是等边三角形。