数学中考高分知识点具体有什么呢?数学中考高分知识点100点以上一定能给你答案。下面是小编为大家整理的数学中考高分知识点100点以上,仅供参考,喜欢可以收藏与分享哟!
数学中考高分知识点
一、一元一次方程根的情况
△=b2-4ac
当△>0时,一元二次方程有2个不相等的实数根;
当△=0时,一元二次方程有2个相同的实数根;
当△<0时,一元二次方程没有实数根2、平行四边形的性质:
① 两组对边分别平行的四边形叫做平行四边形。
② 平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③ 平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形
②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:
① 有一个内角是直角的平行四边形叫做矩形。
② 矩形的对角线相等,四个角都是直角。
③ 对角线相等的平行四边形是矩形。
④ 正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:
①N边形的内角和等于(N-2)180度
②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X
加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性质:
如果a:b=c:d,那么ad=bc
如果 ad=bc ,那么a:b=c:d
84、(2)合比性质:
如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2 相似三角形周长的比等于相似比
98、性质定理3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
数学中考提分方法
1.回归课本,基础知识掌握牢固
结合考纲考点,采取对账的方式,做到点点过关,单元过关。对每一单元的常用公式,定义,要熟练,做到张口就来。对于每个章节的主要解题方法和主要题型等,要做到心中有数。
2.适当练题
要多做习题,目的是要从习题中掌握学习的技术和窍门,不同的题有不同的方法,用不同的技巧,尤其是函数中的动点题是现在出题的热点,要多做,但不要做太难的题,以会为主。
同时,不要过于在意刷题的数量,要做到每做一道题,就能搞明白这道题背后运用的公式定理、同类型题目的做题思路,学会举一反三,不仅能提高复习效率,还能更好掌握知识点。
3.掌握重难点
初中数学的学习重点是函数(包括一次函数,正比例函数,反比例函数,二次函数),重点是意义和性质;三角形(包括基本性质,相似,全等,旋转,平移,对称等);四边形(包括平行四边形,梯形,棱形,长方形,正方形,多边形)的性质,定义,面积。
在一轮的专题复习中,一定要注意以上重点,形成自己的知识网,同时梳理各个知识点之间的连接,这样才能轻松应对最后的压轴题。
4.错题重做
冲刺阶段里,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。错题重做是查漏补缺的很好途径,这样做可以花较少的时间,解决较多的问题。
5.考试时需要掌握一些技巧。
当试卷发下来后,应先大致看一下题量,分配好时间,解题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑。对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处,也是可以运用的。另外,考试时要冷静,如遇到不会的题目,不妨用一用自我安慰的心理,可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。
数学中考提分技巧
1、大胆取舍——确保中考数学相对高分
“有所不为才能有所为,大胆取舍,才能确保中考数学相对高分。”针对中考数学如何备考,数学特级老师说,这几个月的备考一定要有选择。
首先,要进行一次全面的基础内容复习,不能有所遗漏;其次,一定要立足于基础和难易度适中,太难的可以放弃。
在全面复习的基础上,再次把掌握得似懂非懂,知道但又不是很清楚的地方搞清楚。在做题练习上要学会选择,决不能不加取舍地做题,即便是老师布置的作业,也建议同学们选择性地做,已经掌握得很好的不要多做,把好像会做但又不能肯定的题认真做一做,把根本没有感觉的难题放弃不做。千万不要到处去找各个学校的考试题来做,因为这没有针对性,浪费时间和精力。”
2、做到基本知识不丢一分
某外国语学校资深中考数学老师建议考生在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。
首先要梳理知识网络,思路清晰知己知彼。思考中学数学学了什么,教材在排版上有什么规律,琢磨这两个问题其实就是要梳理好知识网络,对知识做到心中有谱。
其次要掌握数学考纲,对考试心中有谱。掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的计算关,做到基本知识不丢一分,那就离做好中考数学的答卷又近了一步。根据考纲和自己的实际情况来侧重复习,也能提高有限时间的利用效率。
3、做好中考数学的最后冲刺
距离中考越来越近,一方面需按照学校的复习进度正常学习,另一方面由于每个人学习情况不一样,自己还需进行知识点和丢分题型的双重查漏补缺,找准短板,准确修复。
题坚持每天一道,并及时总结方法,错题本就发挥作用了。最后每周练习一套中考模拟卷,及时总结考试问题。我们做题的原则是先搞懂搞透错题,再做新题。如果没有时间做新题,多花时间思考、沉淀错题是更有效的学习方法。
中考是一场选拔性的考试,紧张是难免的,只要不过度紧张,适度紧张也是必要的,而且紧张的不是你一个人,大家都紧张。最后要明白决定中考成败的不是题而是简单题,千万不要在难题上不舍得,做到会做的题不丢分就好,这就需要你平时做题专注用心。
4、平时养成好的答题习惯
关于中考应考技巧有几点做法:解题习惯要端正,由于是电脑阅卷,所以平时答题时就养成左对齐按列写的答题习惯;阅题习惯的养成,中考都会提前发卷,考生可利用这段时间,将试卷浏览一遍,大致了解题量、题型,了解试题的难易度,做到心中有数,通览全卷,把握全局。
答题习惯上,先易后难,合理支配答题时间。进入考场后考生特别紧张,可轻拍几下额头,做几个深呼吸,紧张的情绪就会得到缓解。
数学中考高分知识点100点以上相关文章: