学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是小编给大家整理的一些三年级数学知识点,希望对大家有所帮助。
1、四边形:
(1)通过观察、比较,直观认识四边形的特征,能利用特征辨别哪些图形是四边形。
(2)能在点子图或方格纸中画四边形,能在钉子板上围四边形。
2、平行四边形:
(1)结合生活情境,初步感知平行四边形的特征,能辨别哪些图形是平行四边形。
(2)能在点子图或方格纸中画平行四边形,能在钉子板上围平行四边形。
(3)渗透平行四边形和长方形的联系和区别。
3、周长:
(1)结合具体实物和图形理解并准确掌握周长的概念,并能用数学语言描述给定图形的周长。
(2)能用不同的方法测量或计算给定图形的周长,能比较两个图形周长的大小。
4、长方形和正方形的周长:
(1)结合具体情境,探索并掌握长方形和正方形周长的计算方法,感受数学在生活中的应用。
(2)能选择恰当的方法熟练计算长方形和正方形的周长,并能在具体情境中解决相关的实际问题。
5、估计:
(1)在准确掌握长度单位的前提下,能合理、恰当的估测某线段或物体的长度(包括周长)。
(2)能利用估测的相关知识解决生活中的实际问题。
1、例1
(1)在解决问题的过程中回顾除法的含义,并回顾除法各部分的名称及含义,体会除法与生活的密切联系。
(2)结合具体情境,经历除法竖式抽象的过程,体会除法竖式每一步的实际含义,能正确掌握商是一位数的除法竖式的书写格式。
2、例2
(1)在具体情境中体会有余数除法与生活的密切联系,理解有余数除法的意义,理解余数的含义。
(2)探索并掌握有余数除法的试商方法,积累有余数除法的试商经验。
(3)能口算或用竖式计算有余数的除法,并能解决简单的有余数除法的实际问题。
3、例3
(1)在解决问题中进一步理解有余数除法和余数的含义,并进一步巩固有余数除法的计算方法。
(2)经历对许多有余数除法算式的观察、分析过程,探索并掌握余数和除数之间的关系。
(3)能利用余数和除数之间的关系直接判断有余数除法计算的正确性。
4、例4
(1)能灵活利运用有余数除法的知识解决生活中的实际问题,发展应用意识。
(2)在解决实际问题的过程中理解"最多"、"至少"等词语的含义,并学会用"去尾法"和"进一法"解决生活中的实际问题。
1归一问题
【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】 总量÷份数=1份数量
1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。
例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
例2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?
例3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
2归总问题
【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】 1份数量×份数=总量 总量÷1份数量=份数
总量÷另一份数=另一每份数量
【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。
例1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?
例2、小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?
例3、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?