五年级数学考试知识点

求学的三个条件是:多观察、多吃苦、多研究。每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。下面是小编给大家整理的五年数学知识点,希望对大家有所帮助。

五年级上册数学知识点

第一单元小数乘法

1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a  加法结合律:(a+b)+c=a+(b+c)

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8

乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)

变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c

减法:减法性质:a-b-c=a-(b+c)

除法:除法性质:a÷b÷c=a÷(b×c)

五年级数学知识点归纳:图形的面积

【补充知识点】确定一个图形面积的大小,不仅是根据图形的形状,更重要的是根据图形所占格子的多少来确定。

地毯上的图形面积【知识点】根据地毯上所给图案探求不规则图案面积的计算方法。直接通过数方格的方法,得出答案的面积。将图案进行;化整为零;式的计算,即根据图案的特点,将整体的图案分割为若干个相同面积的小图案,通过求小图案的面积,得出整个图案的面积。采用;大面积减小面积;的方法,即通过计算相关图形的面积,得到所求的面积。

【补充知识点】在解决问题时,策略和方法是多种多样的。

动手做【知识点】认识平行四边形、三角形与梯形的底和高:从平行四边形一边的某一点到对边画垂直线段,这条垂直线段就是平行四边形的高,这条对边是平行四边形的底。三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。从梯形的两条平行线中的一条上的某一点到对边画垂直线段,这条垂直线段就是梯形的高,这条对边就是梯形的底。高和底的关系是对应的。

用三角板画出平行四边形的高的方法:把三角板的一条直角边与平行四边形的一条边重合,让三角板的另一条直角边过对边的某一点。从这一点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从点到垂足)就是平行四边形一条边上的高。注意:从一条边上的任意一点可以向它的对边画高,也可以从另一条边上的任意一点向它的对边画高,但把高画在底边延长线上在小学阶段不要求。

用三角板画出三角形的高的方法:把三角板的一条直角边对准三角形的一个顶点,另一条直角边与这个顶点的对边重合。从这个顶点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从顶点到垂足)就是三角形形一条边上的高。

用三角板画梯形的高的方法:用同样的方法,画出梯形两条平行线之间的垂直线段,就是梯形的高。

小学五年级数学学习方法

主动预习

主动预习,不仅能提前了解上课内容,在听课的时候有的放矢,还能锻炼孩子的自学能力。

具体做法:认真阅读教材,在老师的引导下学会看书,带着老师精心设计的思考题去预习。

如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

掌握思考问题的方法

“把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”

一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题,比如上题。

同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师的引导下逐渐掌握解题时的思考方法。

这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;从图形变化关系讲:长方形→正方形;

从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积,

经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。

有的学生很快解答出来:设原长方体的底面长为X,则2X×4=48得:X=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。

掌握思考问题的方法

解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:

(1)本题最重要的特点是什么?

(2)解本题用了哪些基本知识与基本图形?

(3)本题你是怎样观察、联想、变换来实现转化的?

(4)解本题用了哪些数学思想、方法?

(5)解本题最关键的一步在那里?

(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?

(7)本题你能发现几种解法?其中哪一种?那种解法是特殊技巧?

你能总结在什么情况下采用吗?把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,学生解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。

五年级数学文考试知识点相关文章

一键复制全文保存为WORD