小学数学知识点及公式总结汇总

小学数学是通过教材,教小朋友们关于数的认识,四则运算等一系列的知识,那么小学数学知识点及公式有哪些呢?以下是小编准备的一些小学数学知识点及公式总结,仅供参考。

小学数学知识点

(一)笔算两位数加法,要记三条

1、相同数位对齐;

2、从个位加起;

3、个位满10向十位进1。

(二)笔算两位数减法,要记三条

1、相同数位对齐;

2、从个位减起;

3、个位不够减从十位退1,在个位加10再减。

(三)混合运算计算法则

1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

3、算式里有括号的要先算括号里面的。

(四)四位数的读法

1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;

2、中间有一个0或两个0只读一个“零”;

3、末位不管有几个0都不读。

(五)四位数写法

1、从高位起,按照顺序写;

2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

(六)四位数减法也要注意三条

1、相同数位对齐;

2、从个位减起;

3、哪一位数不够减,从前位退1,在本位加10再减。

(七)一位数乘多位数乘法法则

1、从个位起,用一位数依次乘多位数中的每一位数;

2、哪一位上乘得的积满几十就向前进几。

(八)除数是一位数的除法法则

1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;

2、除数除到哪一位,就把商写在那一位上面;

3、每求出一位商,余下的数必须比除数小。

(九)一个因数是两位数的乘法法则

1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

3、然后把两次乘得的数加起来。

(十)除数是两位数的除法法则

1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,

2、除到被除数的哪一位就在哪一位上面写商;

3、每求出一位商,余下的数必须比除数小。

(十一)万级数的读法法则

1、先读万级,再读个级;

2、万级的数要按个级的读法来读,再在后面加上一个“万”字;

3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

(十二)多位数的读法法则

1、从高位起,一级一级往下读;

2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

(十三)小数大小的比较

比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

(十四)小数加减法计算法则

计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

(十五)小数乘法的计算法则

计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

(十六)除数是整数除法的法则

除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

(十七)除数是小数的除法运算法则

除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

(十八)解答应用题步骤

1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

2、确定每一步该怎样算,列出算式,算出得数;

3、进行检验,写出答案。

(十九)列方程解应用题的一般步骤

1、弄清题意,找出未知数,并用X表示;

2、找出应用题中数量之间的相等关系,列方程;

3、解方程;

4、检验、写出答案。

(二十)同分母分数加减的法则

同分母分数相加减,分母不变,只把分子相加减。

(二十一)同分母带分数加减的法则

带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

(二十二)异分母分数加减的法则

异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。

(二十三)分数乘以整数的计算法则

分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

(二十四)分数乘以分数的计算法则

分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。

(二十五)一个数除以分数的计算法则

一个数除以分数,等于这个数乘以除数的倒数。

(二十六)把小数化成百分数和把百分数化成小数的方法

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

把百分数化成小数,把百分号去掉,同时小数点向左移动两位。

(二十七)把分数化成百分数和把百分数化成分数的方法

把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;

把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

【小学数学口决定义归类】

1、什么是图形的周长?

围成一个图形所有边长的总和就是这个图形的周长。

2、什么是面积?

物体的表面或围成的平面图形的大小叫做他们的面积。

3、加法各部分的关系:

一个加数=和—另一个加数

4、减法各部分的关系:

减数=被减数—差被减数=减数+差

5、乘法各部分之间的关系:

一个因数=积÷另一个因数

6、除法各部分之间的关系:

除数=被除数÷商被除数=商×除数

7、角

(1)什么是角?

从一点引出两条射线所组成的图形叫做角。

(2)什么是角的顶点?

围成角的端点叫顶点。

(3)什么是角的边?

围成角的射线叫角的边。

(4)什么是直角?

度数为90°的角是直角。

(5)什么是平角?

角的两条边成一条直线,这样的角叫平角。

(6)什么是锐角?

小于90°的角是锐角。

(7)什么是钝角?

大于90°而小于180°的角是钝角。

(8)什么是周角?

一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°。

8、(1)什么是互相垂直?什么是垂线?什么是垂足?

两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

(2)什么是点到直线的距离?

从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。

9、三角形

(1)什么是三角形?

有三条线段围成的图形叫三角形。

(2)什么是三角形的边?

围成三角形的每条线段叫三角形的边。

(3)什么是三角形的顶点?

每两条线段的交点叫三角形的顶点。

(4)什么是锐角三角形?

三个角都是锐角的三角形叫锐角三角形。

(5)什么是直角三角形?

有一个角是直角的三角形叫直角三角形。

(6)什么是钝角三角形?

有一个角是钝角的三角形叫钝角三角形。

(7)什么是等腰三角形?

两条边相等的三角形叫等腰三角形。

(8)什么是等腰三角形的腰?

有等腰三角形里,相等的两个边叫做等腰三角形的腰。

(9)什么是等腰三角形的顶点?

两腰的交点叫做等腰三角形的顶点。

(10)什么是等腰三角形的底?

在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。

(11)什么是等腰三角形的底角?

底边上两个相等的角叫等腰三角形的底角。

(12)什么是等边三角形?

三条边都相等的三角形叫等边三角形,也叫正三角形。

(13)什么是三角形的高?什么叫三角形的底?

从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。

(14)三角形的.内角和是多少度?

三角形内角和是180°。

10、四边形

(1)什么是四边形?

有四条线段围成的图形叫四边形。

(2)什么是平等四边形?

两组对边分别平行的四边形叫做平行四边形。

(3)什么是平行四边形的高?

从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

(4)什么是梯形?

只有一组对边平行的四边形叫做梯形。

(5)什么是梯形的底?

在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。

(6)什么是梯形的腰?

在梯形里,不平等的一组对边叫梯形的腰。

(7)什么是梯形的高?

从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。

(8)什么是等腰梯形?

两腰相等的梯形叫做等腰梯形。

11、什么是自然数?

用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。

12、什么是四舍五入法?

求一个数的近似数时,看被省略的尾数位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。

13、加法意义和运算定律

(1)什么是加法?

把两个数合并成一个数的运算叫加法。

(2)什么是加数?

相加的两个数叫加数。

(3)什么是和?

加数相加的结果叫和。

(4)什么是加法交换律?

两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。

14、什么是减法?

已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。

15、什么是被减数?什么是减数?什么叫差?

在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。

16、加法各部分间的关系:

和=加数+加数加数=和—另一加数

17、减法各部分间的关系:

差=被减数—减数减数=被减数—差被减数=减数+差

18、乘法

(1)什么是乘法?

求几个相同加数的和的简便运算叫乘法。

(2)什么是因数?

相乘的两个数叫因数。

(3)什么是积?

因数相乘所得的数叫积。

(4)什么是乘法交换律?

两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。

(5)什么是乘法结合律?

三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

19、除法

(1)什么是除法?

已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

(2)什么是被除数?

在除法中,已知的积叫被除数。

(3)什么是除数?

在除法中,已知的一个因数叫除数。

(4)什么是商?

在除法中,求出的未知因数叫商。

20、乘法各部分的关系:

积=因数×因数一个因数=积÷另一个因数

21、(1)除法各部分间的关系:

商=被除数÷除数除数=被除数÷商

(2)有余数的除法各部分间的关系:

被除数=商×除数+余数

22、什么是名数?

通常量得的数和单位名称合起来的数叫名数。

23、什么是单名数?

只带有一个单位名称的数叫单名数。

24、什么是复名数?

有两个或两个以上单位名称的数叫复名数。

25、什么是小数?

仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。

26、什么是小数的基本性质?

小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。

27、什么是有限小数?

小数部分的位数是有限的小数叫有限小数。

28、什么是无限小数?

小数部分的位数是无限的小数叫无限小数。

29、什么是循环节?

一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。

30、什么是纯循环小数?

循环节从小数第一位开始的叫纯循环小数。

31、什么是混循环小数?

循环节不是从小数部分第一位开始的叫做混循环小数。

32、什么是四则运算?

我们把学过的加、减、乘、除四种运算统称四则运算。

33、什么是方程?

含有未知数的等式叫方程。

34、什么是解方程?

求方程解的过程叫解方程。

35、什么是倍数?什么叫约数?

如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。

36、什么样的数能被2整除?

个位上是0、2、4、6、8的数都能被2整除。

37、什么是偶数?

能被2整除的数叫偶数。

38、什么是奇数?

不能被2整除的数叫奇数。

39、什么样的数能被5整除?

个位上是0或5的数能被5整除。

40、什么样的数能被3整除?

一个数的各位上的和能被3整除,这个数就能被3整除。

41、什么是质数(或素数)?

一个数如果只有1和它本身两个约数,这样的数叫质数。

42、什么是合数?

一个数除了1和它本身还有别的约数,这样的数叫合数。

43、什么是质因数?

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。

44、什么是分解质因数?

把一个合数用质因数相乘的形式表示出来叫做分解质因数。

45、什么是公约数?什么叫公约数?

几个数公有的约数叫公约数。其中的一个叫公约数。

46、什么是互质数?

公约数只有1的两个数叫互质数。

47、什么是公倍数?什么是最小公倍数?

几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。

48、分数

(1)什么是分数?

把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。

(2)什么是分数线?

在分数里中间的横线叫分数线。

(3)什么是分母?

分数线下面的部分叫分母。

(4)什么是分子?

分数线上面的部分叫分子。

(5)什么是分数单位?

把单位“1”平均分成若干份,表示其中的一份叫分数单位。

49、怎么比较分数大小?

(1)分母相同的两个分数,分子大的分数比较大。

(2)分子相同的两个分数,分母小的分子比较大。

(3)什么是真分数?

分子比分母小的分数叫真分数。

(4)什么是假分数?

分子比分母大或者分子和分母相等的分数叫假分数。

(5)什么是带分数?

由整分数和真分数合成的数通常叫带分数。

(6)什么是分数的基本性质?

分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。

(7)什么是约分?

把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。

(8)什么是最简分数?

分子、分母是互质数的分数叫最简分数。

50、比

(1)什么是比?

两个数相除又叫两个数的比。

(2)什么是比的前项?

比号前面的数叫比的前项。

(3)什么是比的后项?

比号后面的数叫比的后项。

(4)什么是比值?

比的前项除以后项所得的商叫比值。

(5)什么是比的基本性质?

比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。

51、长方体和正方体

(1)什么是棱?

两个面相交的边叫棱。

(2)什么是顶点?

三条棱相交的点叫顶点。

(3)什么是长方体的长、宽、高?

相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。

(4)什么是正方体(立方体)?

长宽高都相等的长方体叫正方体(或立方体)。

(5)什么是长方体的表面积?

长方体_个面的总面积叫长方体的表面积。

(6)什么是物体体积?

物体所占空间的大小叫做物体的体积。

52、圆

(1)什么是圆心?

圆中心的点叫圆心。

(2)什么是半径?

连接圆心和圆上任意一点的线段叫半径。

(3)什么是直径?

通过圆心、并且两端都在圆上的线段叫直径。

(4)什么是圆的周长?

围成圆的曲线叫圆的周长。

(5)什么是圆周率?

我们把圆的周长和直径的比值叫圆周率。

(6)什么是圆的面积?

圆所围平面的大小叫圆的面积。

(7)什么是扇形?

一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。

(8)什么是弧?

在圆上两点之间的部分叫弧。

(9)什么是圆心角?

顶点在圆心上的角叫圆心角。

(10)什么是对称图形?

如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。

小学人教版数学公式

1每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6加数+加数=和

和-一个加数=另一个加数

7被减数-减数=差

被减数-差=减数

差+减数=被减数

8因数×因数=积

积÷一个因数=另一个因数

9被除数÷除数=商

被除数÷商=除数

商×除数=被除数

小学数学图形计算公式

1正方形

C周长S面积a边长

周长=边长×4

C=4a

面积=边长×边长

S=a×a

2正方体

V:体积a:棱长

表面积=棱长×棱长×6

S表=a×a×6

体积=棱长×棱长×棱长

V=a×a×a

3长方形

C周长S面积a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4长方体

V:体积s:面积a:长b:宽h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5三角形

s面积a底h高

面积=底×高÷2

s=ah÷2

三角形高=面积×2÷底

三角形底=面积×2÷高

6平行四边形

s面积a底h高

面积=底×高

s=ah

7梯形

s面积a上底b下底h高

面积=(上底+下底)×高÷2

s=(a+b)×h÷2

8圆形

S面积C周长∏d=直径r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9圆柱体

v:体积h:高s;底面积r:底面半径c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10圆锥体

v:体积h:高s;底面积r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或小数+差=大数)

植树问题

1非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

小升初数学试卷含答案

一、“相信你的能力!”请你耐心填一填。(本题共20分,每空1分)

1、二十亿零三十万写作(2000300000 ),改写成用“万”作单位的数是( 200030万 ),省略“亿”后面的尾数约是( 20亿 )。

2、一个蛋糕生2千克,把它平均分给10个小朋友,每个小朋友分得这个蛋糕的(0.1),分得的重量是(0.2)千克。

3、向南走200米记作+200米,那么-350米表示(向北350米)。

4、0.006千克=(6)克 2.15小时=(2)小时(9)分

5升9毫升=(5.09)立方分米 980平方分米=(9.8)平方米

5、六(1)班今天出勤48人,有2人因病请假,今天六(1)班学生的出勤率是(46/48)。

6、 5; 20; 0.6 .

7、把一根木料锯成4段要用12分钟,照这样,如果要锯成6段,一共需要(18)分钟。

8、从一个边长为20厘米的正方形纸片中,剪出一个最大的圆,这个圆的面积是(314)平方厘米。

9、从甲城到乙城,货车要行3小时,客车要行4小时,货车与客车的时间最简比是(3:4),货车与客车的速度最简比是(4:3)。

10一个圆柱和一个圆锥的底面积和体积分别相等,圆锥的高是1.8分米,圆柱的高是(0.6)分米。

二、请你判一判。你认为对的,请在每小题的后面括号里打上“√”,错的打上“×”。(本题共8分,每空1分)

1、公历年份是4的倍数的一定都是闰年。 (×)

2、半圆的周长就是它所在圆周长的一半。 (×)

3、一个数的倒数不一定比这个数小。 (√)

4、如果两条直线平行,那么这两条直线一定在同一平面内。 (×)

5、一吨煤用去它的40%,还剩下60%吨。 (×)

6、小数点的后面添上0或者去掉0,小数的大小不变。 (×)

7、一个长方体,它的长、宽、高都扩大2倍,它的体积扩大6倍。 (×)

8、把5个苹果放入3个抽屉里,至少有一个抽屉里的苹果不少于3个。 (×)

三、请你精心选一选。把正确的答案的`序号填在括号里。(本题共5分,每空1分)

1、用一个放大100倍的放大镜来观察一个30度的角,则观察到的角( A )。

A、大小不变 B、缩小了100倍 C、放大了100倍

2、一个三角形的三个内角度数比是2:3:5,这个三角形是( C )。

A、锐角三角形 B、钝角三角形 C、直角三角形

3、 是大于10的自然数,下列分数中分数值最小的是( B )。

A、 B、 C、

4、一种商品,原价600元,现按九折出售,现在的价格比原来便宜( C )。

A、530元 B、40元 C、60元

5、用一条长200厘米的铁丝围成以下图形,面积最大的是( B )。

A、正方形 B、圆 C、长方形

四、坚信你的“运算本领”。请你细心算一算。(本题共32分)

1、直接写出下面各题的得数。(本题共8分,每小题1分)

25.7 9.14 3.5 0.99

5/4 3.6 24/7 1/3

2、计算下面各题(能简算的要简算)。(本题共12分,每小题3分)

解:原式=40×0.25=10 解:原式=(1.8+2.2)×0.25=1

解:原式=[1-1/4]×2/3 解:原式=12×[7/6×3]

=3/4×2/3=0.5 =12×7/2=42

3、解比例或解方程。(本题共6分,每空=小题3分)

解:原方程得10.1-2.9=4x 解:原方程得 24x=12×7.5

4x=7.2 24x=90

X=7.2÷4 x=3.75

X=1.8

4、列综合算式或方程计算。(本题共6分,每空3分)

(1)10与3.5除0.7的商相加,再乘0.2,积是多少?(列综合算式)

解:(10+0.7÷3.5)×0.2=(10+0.2)×0.2=20.4

(2)4.32的 比一个数的60%少6,求这个数是多少?(用方程解)

解:设这个数为x

4.32× =60%x-6

0.45×5=0.6x-6

0.6x=8.25

X=13.75

五、做一做、画一画。(单位:厘米)(共10分)

(1)求下列阴影部分的面积。(3分) (2)求圆锥的体积。(3分)

20cm

解:S阴=20×20-3.14×102

=400-314=86

解:V圆锥= ×3.14× ×15

=62.8

(3)画一画。

1、画出三角形ABC的BC边上的高。(2分)

2、根据右图中提供的信息,不用没量任何数据,画一个与三角形ABC面积相等的三角形。(2分)

六、“发挥你的聪明才智”请你用心解一解。(本题共25分,每小题5分)

1、在比例尺是 的地图上,量得甲、乙两地之间的距离是2.4厘米,求甲、乙两地实际距离是多少千米?

解:设甲、乙两地实际距离为xcm

=2.4:x

X=2.4×3500000=840000cm

X=840km

答:设甲、乙两地实际距离为840km

2、利民果园有梨树180棵,其中苹果树的棵数比梨树多 。果园里有苹果树多少棵?

解:180+180×1/4=225

3、一种手机,现在售价是1200元,比原来降低了400元。降低了百分之几?

解:设降低了百分之x

1200(1-x)=1200-400

X=400/1200=33.3%

4、甲、乙两港相距140千米,一艘轮船从甲港驶往乙港用了4.5小时,返回时因为是逆行,比去时多用了1小时,求这艘轮船往返的平均速度?

解:(140×2)÷(4.5+1+4.5),

=280÷10,

=28(千米/时);

答:这艘轮船往返的平均速度是28千米/时.

5、某车间要生产一批电视机零件900个,由甲组单独做12天完成,由乙组单独做18天完成,先由甲组做7天,剩下的两组合作,还要几天完成?

解:先算出甲每天完成900÷12=75个,乙每天完成900÷18=50个。

然后得出(900-7X75)÷(75+50)=3,所以先由甲单独做7天,剩下的两组合作,还要3天才能完成。


一键复制全文保存为WORD
相关文章