怎样提高数学题分数

  做作业是学生巩固知识,训练方法,发展思维的重要的不可缺少的学习环节,它是在老师指导下进行的有目的学习活动。虽然作业天天做,但效果却大不同。小编整理了做数学题的方法的方法,希望能帮助到您。

  怎样做数学题才能发挥最大效益

  一,温故知新,把握要领

  先把书看透,把老师上课的内容回忆一遍再动手做作业。做作业前,首先温故有关的知识,回顾概念,掌握要求,了解有关的注意事项,明确学习的目的,把握解题的规范化要求,然后再动手做作业,就心中有数,练中学,学中练,达到巩固目的,强化了知识,提高了能力。

  但事实上,我们许多同学没有这个好习惯,拿到题目就做。这样,首先是速度慢,效率低。另外,由于概念不清,有的概念理解错误,做了题目起不到应有的作用,甚至还有反作用,巩固了错误,在相应方面形成了一个顽疾,为以后的高考冲刺埋下后患。

  二,明确题意,构建思路

  题海战术的最大特点是以做题的数量作为标准,并期望以多取胜。由于高考升学的压力,不少同学不知不觉的掉进题海,拿到题目不假思索,跟着感觉走,时常出现张冠李戴,答非所问等现象,也会出现漏解或者画蛇添足,劳而无功。长期下去,最大的坏处是形成不严谨的思维习惯,不利于将来的发展。

  审题是我们解题的前奏工作,不可忽视,在解题前必须审清题意,分析条件和结论,并且根据条件和结论进行联想:以前遇到过类似或者部分类似的问题吗?当时是用什么方法解决的?在这里还有效吗?等等。通过联想构建解题思路,设计解题程序,把握解题要点,为正确快速解题扫清障碍,奠定基础。

  三,限定时间,一气呵成

  常听同学抱怨,作业太多,做不完了,有的同学为应付还不惜抄袭作业,影响优秀品质的形成。了解下来,问题大多是在时间安排上。觉得辛苦的同学,他们的作业都是在弹性的时间内完成,想做就做些,不想做就玩会儿;或者慢条斯理,认为时间还有的是,等会再完成。有一次,作业量并不大,可是有位同学居然没完成,他坦诚的说,晚上应该花上半小时就完成,可是当走到电视前时,就自我安慰,看会吧,睡前再做,而到睡前又想起语文老师布置的“周记”明天早自习要交,只有先写周记,早自习再做吧,早自习外语老师来检查背诵,所以就误了事。

  但是,大部分同学还是对数学作业高度重视,应对自如,甚至还学有余力,额外做了些提高题,所以他们经常要求老师多布置些作业。调查下来,有两个是他们的共同特点:一是他们做作业限时完成,不拖拉,干净利落,遇到困难,待各项任务基本完成后,再进行钻研。另一方面,他们做到了心动不如行动。他们拿到问题,常常是立即投入战斗,而不是去想今天有多少作业,需多少时间,难度是否太大,能不能完成得了等等。他们遇到难题是先能做多少就做多少,能解决到什么程度就解决到什么程度,当解决了问题的部分时,常常会闪出好念头,悟出问题的解决方案。实际上每解决一点就是向目标*近一步,这就是“吹尽黄沙始得金”的道理。

  四,做后反思,提高效益

  有人说题海战术是臭豆腐,闻的臭,吃的香。题海战术既然被人普遍使用,肯定有它存在的道理,不能全盘否定。但是它的效益不高的弊端也是很明显的。对它进行改进也是情理之中,实践证明解题后反思是提高效益的有效途径。

  首先要反思题意。前面已经介绍了审题的重要性,这里不再详述。

  其次要反思错误。要用批评的眼光去看待自己的解题过程,看看思路是否有问题,概念使用是否正确,计算是否有失误,思考是否周密等等。有时需要从不同的角度去思考,不同的方法去演算更能发现问题。千万别把检查答案当成“自我欣赏”,那么肯定发现不了错误,发现不了错误当然就谈不上克服错误了。

  第三要反思方法。解完题后再思考,由于对这个问题的认识有了一定的高度,所以思考出的新方法常常更为简捷,巧妙,在很大程度上能激励我们的信心,即使我们发现不了巧思妙解,在思考过程中我们回顾了相关知识,尝试了许多方法,收获仍不可小视。

  最后还要反思变化。研究性学习已经进入高考,提高探究创新能力已经刻不容缓。许多经典的数学问题可以进行变化,创设探究的契机。这些,大家只要利用原来问题的解题思路进行探索,知道他们都是周期函数。这样,我们解一题会一类,并训练了探究,创新能力,较大限度提高了解题的效益。

  高中数学最强“偷分”技能

  1.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了。

  2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!

  3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。省时省力!

  4.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!

  5.立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!

  6.选择题中考线面关系的可以先从D项看起,前面都是来浪费你时间的

  7.选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案

  8.线性规划题目直接求交点带入比较大小即可

  9.遇到这样的选项 A.1/2 B.1 C.3/2 D.5/2 这样的话答案一般是D因为B可以看作是2/2 前面三个都是出题者凑出来的 如果答案在前面3个的话 D应该是2(4/2)

  怎么样,是不是感觉妈妈再也不担心你的数学了。

  以上只是一些小技巧,数学想在不会的情况下再多拿一些分,还需要在大题上多拿分。

  大题文科第一题一般是三角函数题,第一步一般都是需要将三角函数化简成标准形式Asin(ωx+φ)+c

  接下来按题做就行了,注意二倍角的降幂作用以及辅助角(合一)公式,周期公式,对称轴、对称中心、单调区间、最大值、最小值都是用整体法求解。求最值时通过自变量的范围推到里面整体u=ωx+φ 的范围,然后可以直接画sinu的图像,避免画平移的图像。

  这部分题还有一种就是解三角形的问题,运用正弦定理、余弦定理、面积公式,通常有两个方向,即角化成边和边化成角,得根据具体问题具体分析哪个方便一些,遇到复杂的题就把未知量列成未知数,根据定理列方程组,然后解方程组即可。

  理科如果考数列题的话,注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可,其它的一般注意类型采用不同的方法(已知Sn求an、已知Sn与an关系求an(前两种都是利用an=Sn-Sn-1,注意讨论n=1、n>1),累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列lamt,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项);

  数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。如有其它问题,注意放缩法证明,还有就是数列可以看成一个以n为自变量的函数。

  第二题是立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。计算题主要是体积,注意将字母换位(等体积法);

  线面距离用等体积法。理科还有求二面角、线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错。

  第三题是概率与统计题,主要有频率分布直方图,注意纵坐标(频率/组距)。求概率的问题,文科列举,然后数数,别数错、数少了啊,概率=满足条件的个数/所有可能的个数;

  理科用排列组合算数。独立性检验根据公式算K方值,别算错数了,会查表,用1减查完的概率。回归分析,根据数据代入公式(公式中各项的意义)即可求出直线方程,注意(x平均,y平均)点满足直线方程。理科还有随机变量分布列问题,注意列表时把可能取到的所有值都列出,别少了,然后分别算概率,最后检查所有概率和是否是1,不是1说明要不你概率算错了,要不随机变量数少了。

  第四题是函数题,第一步别忘了先看下定义域,一般都得求导,求单调区间时注意与定义域取交。看看题型,将题型转化一下,转化到你学过的内容(利用导数判断单调性(含参数时要利用分类讨论思想,一般求导完通分完分子是二次函数的比较多,讨论开口a=0、a<;0、a>;0和后两种情况下δ<;=0、δ>;0)

  求极值(根据单调区间列表或画图像简图)、求最值(所有的极值点与两端点值比较)等),典型的有恒成立问题、存在问题(注意与恒成立问题的区别),不管是什么都要求函数的最大值或最小值,注意方法以及比较定义域端点值,注意函数图象(数形结合思想:求方程的根或解、曲线的交点个数)的运用。

  证明有关的问题可以利用证明的各种方法(综合法、分析法、反证法、理科的数学归纳法)。多问的时候注意后面的问题一般需要用到前面小问的结论。抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。

  第五题是圆锥曲线题,第一问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了。

  第二问有直线与圆锥曲线相交时,记住“联立完事用联立”,第一步联立,根据韦达定理得出两根之和、两根之差、因一般都是交于两点,注意验证判别式>;0,设直线时注意讨论斜率是否存在。

  第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2和x1x2,然后将结果代入即可,通常涉及的题型有

  弦长问题(代入弦长公式)、

  定比分点问题(根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决)、

  点对称问题(利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、

  定点问题(直线y=kx+b过定点即找出k与b的关系,如b=5k+7,然后将b代入到直线方程y=kx+5k+7=k(x+5)+7即可找出定点(-5,7))、

  定值问题(基本思想是函数思想,将要证明或要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,通过适当化简,消去变量即得定值。)、

  最值或范围问题(基本思想还是函数思想,将要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,利用函数求值域的方法(首先要求变量的范围即定义域—别忘了delt>;0,然后运用求值域的各种方法—直接法、换元法、图像法、导数法、均值不等式法(注意验证“=”)等)求出最值(最大、最小),即范围也求出来了)。

  抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。


怎样提高数学题分数相关文章:

1.怎样提高数学大题分数

2.怎样提高高考数学大题分数

3.如何提高数学做题的速度和准确度?这4个技巧要知道

4.初中如何学好数学?初中提高数学成绩的方法有哪些?

5.短时间提高数学成绩的方法

一键复制全文保存为WORD