数学是一门基础性的科学,值得每个人去学习,尤其是孩子,更要去学习数学,并且以此来构架自己的思维体系。下面小编为大家带来2022六年级下册数学重要知识点总结,希望大家喜欢!
六年级下册数学重要知识点
一、负数
1.在熟悉的生活情境中初步认识负数,能正确的读.写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3.能借助数轴初步学会比较正数.0和负数之间的大小。
二、圆柱和圆锥
1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面.侧面和高。认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积.表面积的计算方法,以及圆柱.圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察设计和制作圆柱.圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
三、比例
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育
四、统计
1.会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
2.能根据统计图提供的信息,做出正确的判断或简单预测。
五、数学广角
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过“抽屉原理”的灵活应用感受数学的魅力。
六、整理和复习
1.比较系统地掌握有关整数.小数.分数和百分数.负数.比和比例.方程的基础知识。能比较熟练地进行整数.小数.分数的四则运算,能进行整数.小数加.减.乘.除的估算,会使用学过的简便算法,合理.灵活地进行计算;会解学过的方程;养成检查和验算的习惯。
2.巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。
3.掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长.面积和体积,并能应用;巩固所学的简单的画图.测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移.旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。
4.掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。
5.进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。
六年级下册数学必修知识点
一、圆柱
1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:
1、以长方形的长为底面周长,宽为高;
2、以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
3、圆柱的特征:
(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高
4、圆柱的切割:
①横切:切面是圆,表面积增加2倍底面积,即S增=2πr?0?5
②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh
5、圆柱的侧面展开图:
①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形
②不沿着高展开,展开图形是平行四边形或不规则图形
③无论怎么展开都得不到梯形
圆柱变形记,圆柱怎么变形成长方体?与长方体又有什么联系?怎么借助长方体的体积计算圆柱的体积?
6、圆柱的相关计算公式:
底面积:S底=πr?0?5
底面周长:C底=πd=2πr
侧面积:S侧=2πrh
表面积:S表=2S底+S侧=2πr?0?5+2πrh
体积:V柱=πr?0?5h
考试常见题型:
①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长
②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积
③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积
⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积
以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算
无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积
烟囱通风管的表面积=侧面积
只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装
侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池
侧面积+两个底面积:油桶、米桶、罐桶类
二、圆锥
1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。
2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
3、圆锥的特征:
(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
4、圆锥的切割:
①横切:切面是圆
②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh
5、圆锥的相关计算公式:
底面积:S底=πr?0?5
底面周长:C底=πd=2πr
体积:V锥=1/3πr?0?5h
考试常见题型:
①已知圆锥的底面积和高,求体积,底面周长
②已知圆锥的底面周长和高,求圆锥的体积,底面积
③已知圆锥的底面周长和体积,求圆锥的高,底面积
以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算
圆柱和圆锥的关系
1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
4、圆柱与圆锥等底等高,体积相差2/3Sh
小学数学单位换算公式大全
长度单位换算:
1千米=1000米。
1米=10分米。
1分米=10厘米。
1米=100厘米。
1厘米=10毫米。
面积单位换算:
1平方千米=100公顷。
1公顷=10000平方米。
1平方米=100平方分米。
1平方分米=100平方厘米。
1平方厘米=100平方毫米。
体(容)积单位换算:
1立方米=1000立方分米。
1立方分米=1000立方厘米。
1立方分米=1升。
1立方厘米=1毫升。
1立方米=1000升。
重量单位换算:
1吨=1000千克。
1千克=1000克。
1千克=1公斤。
人民币单位换算:
1元=10角。
1角=10分。
1元=100分。
时间单位换算:
1世纪=100年。
1年=12月。
大月(31天)有:135781012月。
小月(30天)的有:46911月。
平年2月28天,闰年2月29天。
平年全年365天,闰年全年366天。
1日=24小时1时=60分。
1分=60秒1时=3600秒。
数学因数与倍数知识点
1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2、一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。
六年级下册数学知识点总结大全
1.如果不动脑筋找技巧,用我们手中小小的电子计算器做加法计算也非常麻烦.例如,计算9+10+11+12=?就要按11次键(想一想为什么?)像这样,计算:1+2+3+4+……+98=?一共要按多少次键?
2.某人闲着无事,在纸上从9一直写到309,它一共写了多少个数字?
3.自然数从1到n,共用了942个数字,n是几?
4.有一天,妈妈回家想考一考聪明的儿子,于是妈妈说:“儿子,你说从3开始连续写到某个自然数,共写了430个数字,那么这个自然数是几?
5.在1、2、3、4、5……499、500.问数字“2”在这些数中一共出现了多少次?
6.在1~608中,数字“0”共出现多少次?
7.在1、3、5、7、……、1999、20_这个数列中,数字“5”一共出现了多少次?
8.在2、4、6、8、10、……、200、202这个数列中,“4”共出现多少次?
【方法归纳】在进行整数计数问题的解答时,关键要弄清位数与数位、位数与数字个数的关系,这样才能很快地做出每一道题.题
六年级下册数学知识点5
(一)、折扣和成数
1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。
几折就是十分之几,也就是百分之几十。例如:八折=8/10=80%,
六折五=6.5/10=65/100=65%
解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80%
商品现在打六折五:现在的售价是原价的65%
2、成数:
几成就是十分之几,也就是百分之几十。例如:一成=1/10=10%
八成五=8.5/10=85/100=80%
解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10%
今年小麦的收成是去年的八成五:今年小麦的收成是去年的85%
(二)、税率和利率
1、税率
(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:
应纳税额=总收入×税率
收入额=应纳税额÷税率
2、利率
(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的计算公式:
利息=本金×利率×时间
利率=利息÷时间÷本金×100%
(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:
税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)
税后利息=本金×利率×时间×(1-利息税率)
购物策略:
估计费用:根据实际的问题,选择合理的估算策略,进行估算。
购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案
数学最小的数是什么
要回答这个问题,我们首先看一下“几位数”的概念:在一个数中数字的个数是几(其最左端的数字不为0),这个数就是几位数。关于几位数的定义中,最左端的数字不为0是关键条件。就像我们分数定义中,明确规定分母不为0一样,否则没意义。
在整数中,最小的计数单位是1(个),当0单独存在时,它不占有数位。当0出现在一个几位数的末尾或中间时,它起到的只是“占位”的作用,表示该位上没有计数单位。
假设0也算一位数的话,那么最小的两位数是“10”还是“00”呢?00是没有两位数的意义的。
所以,一位数是由一个不是0这个数字写出的数,只要几位数的意义不变,最小的一位数仍然是1。
数学三位数乘两位数知识点
速度×时间=路程
单价×数量=总价
工作效率×工作时间=工作总量
路程÷时间=速度
总价÷单价=数量
工作总量÷工作时间=工作效率
路程÷速度=时间
总价÷数量=单价
工作总量÷工作效率=工作时间
积的变化规律:一个因数不变,另一个因数乘或除以几,积也乘或除以几(零除外)
一个因数乘几,另一个因数除以几,积不变(零除外)。
两位数乘三位数,积最多五位数,最少四位数
估算原则:便于口算、接近准确数、能解决实际问题(估大或估小)
2022六年级下册数学重要知识点总结相关文章: