总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它是增长才干的一种好办法,让我们好好写一份总结吧。如何把总结做到重点突出呢?下面是小编给大家带来的高一数学重点知识点通用,以供大家参考!
高一数学重点知识点通用
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
高一数学知识点归纳人教版
集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。
例如:1、分散的人或事物聚集到一起;使聚集:紧急~。
2、数学名词。一组具有某种共同性质的数学元素:有理数的~。
3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的所有领域。
集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
精选高一数学知识点
圆的方程定义:
圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
直线和圆的位置关系:
1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。
①Δ>0,直线和圆相交。②Δ=0,直线和圆相切。③Δ<0,直线和圆相离。
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。
①dR,直线和圆相离。
2、直线和圆相切,这类问题主要是求圆的切线方程。求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。
3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。
切线的性质
⑴圆心到切线的距离等于圆的半径;
⑵过切点的半径垂直于切线;
⑶经过圆心,与切线垂直的直线必经过切点;
⑷经过切点,与切线垂直的直线必经过圆心;
当一条直线满足
(1)过圆心;
(2)过切点;
(3)垂直于切线三个性质中的两个时,第三个性质也满足。
切线的判定定理
经过半径的外端点并且垂直于这条半径的直线是圆的切线。
切线长定理
从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。
高一数学重点知识点通用相关文章: