高考冲刺数学易错题汇集

你还在找数学复习资料吗?那么数学怎么复习?下面小编就同大家聊聊关于高考冲刺数学易错题汇集,希望有所帮助!

高考冲刺数学易错题汇集

要点1:利用导数研究曲线的切线

1.导数的几何意义:函数在处的导数的几何意义是:曲线在点处的切线的斜率(瞬时速度就是位移函数对时间的导数)。

2.求曲线切线方程的步骤:(1)求出函数在点的导数,即曲线在点处切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为。注:①当曲线在点处的切线平行于轴(此时导数不存在)时,由切线定义可知,切线方程为;②当切点坐标未知时,应首先设出切点坐标,再求解。

要点2:利用导数研究导数的单调性 利用导数研究函数单调性的一般步骤。

(1)确定函数的定义域;(2)求导数;(3)①若求单调区间(或证明单调性),只需在函数的定义域内解(或证明)不等式>0或<0。②若已知的单调性,则转化为不等式≥0或≤0在单调区间上恒成立问题求解。

要点3:利用导数研究函数的极值与最值

1.在求可导函数的极值时,应注意:(以下将导函数取值为0的点称为函数的驻点可导函数的极值点一定是它的驻点,注意一定要是可导函数。例如函数在点处有极小值=0,可是这里的根本不存在,所以点不是的驻点.(1)可导函数的驻点可能是它的极值点,也可能不是极值点。例如函数的导数,在点处有,即点是的驻点,但从在上为增函数可知,点不是的极值点.(2) 求一个可导函数的极值时,常常把驻点附近的函数值的讨论情况列成表格,这样可使函数在各单调区间的增减情况一目了然.(3) 在求实际问题中的最大值和最小值时,一般是先找出自变量、因变量,建立函数关系式,并确定其定义域.如果定义域是一个开区间,函数在定义域内可导(其实只要是初等函数,它在自己的定义域内必然可导),并且按常理分析,此函数在这一开区间内应该有最大(小)值(如果定义域是闭区间,那么只要函数在此闭区间上连续,它就一定有最大(小).记住这个定理很有好处),然后通过对函数求导,发现定义域内只有一个驻点,那么立即可以断定在这个驻点处的函数值就是最大(小)值。知道这一点是非常重要的,因为它在应用一般情况下选那个不带常数的。因为.

3.利用定积分来求面积时,特别是位于轴两侧的图形的面积的计算,分两部分进行计算,然后求两部分的代数和.

命题角度 1导数的概念与运算

1.设,,…, ,n∈N,则 ( )

A.sinx B.-sinx C.cosx D.-cosx

[考场错解] 选C

[专家把脉] 由=,,f3(x) =(-sinx)’=-cosx, ,,故周期为4。

[对症下药] 选A

2.已知函数在x=1处的导数为3,的解析式可能为 ( )

A.=(x-1)3+32(x-1) B.=2x+1 C.=2(x-1)2 D.=-x+3

[考场错解] 选B ∵f(x)=2x+1,∴f’(x)=(2x+1)’=2x+1|x=1=3.

[专家把脉] 上面解答错误原因是导数公式不熟悉,认为(2x+1)’=2x+1.正确的是(2x+1)’=2,所以x=1时的导数是2,不是3。

=2e-xcosx令f’(x)=0,x=nπ+(n=1,2,3,…)从而xn=nπ+。f(xn)=e-( nπ+)(-1)n·=-e.

∴数列{f(xn)}是公比为q=-e-π的等比数列。

[专家把脉] 上面解答求导过程中出现了错误,即(e-x)’=e-x是错误的,由复合函数的求导法则知(e-x)’=e-x(-x)’=-e-x才是正确的。

[对诊下药](1)证明:f’(x)=(e-x)’(cos+sinx)+e-x(cosx+sinx)’ =-e-x(cosx+sinx) +e-x(-sinx+cos)

=-2e-xsinx. 令f’(x)=0得-2e-xsinx=0,解出x=nπ,(n为整数,从而xn=nπ(n=1,2,3,…),

f(xn)=(-1)ne-nπ,所以数列|f(xn)|是公比q=-e-π的等比数列,且首项f(x1)=-e-π

(2)Sn=x1f(x1)+x2f(x2)+…+xnf(xn)=nq(1+2q+…+nqn-1)

aSn=πq(q+2q2+…+nqn)=πq(-nqn)从而Sn=(-nqn)

∵|q|=e-π<1 ∴qn=0,∴

专家会诊1.理解导数的概念时应注意导数定义的另一种形式:设函数f(x)在x=a处可导,则的运用。2.复合函数的求导,关键是搞清复合关系,求导应从外层到内层进行,注意不要遗漏3.求导数时,先化简再求导是运算的基本方法,一般地,分式函数求导,先看是否化为整式函数或较简单的分式函数;对数函数求导先化为和或差形式;多项式的积的求导,先展开再求导等等。

命题角度 2导数几何意义的运用

1.曲线y=x3在点(1,1)的切线与x轴、直线x=2所围成的三角形面积为_________.

[考场错解] 填2 由曲线y=x3在点(1,1)的切线斜率为1,∴切线方程为y-1==x-1,y=x.所以三条直线y=x,x=0,x=2所围成的三角形面积为S=×2×2=2。

[专家把脉] 根据导数的几何意义,曲线在某点处的切线斜率等于函数在这点处的导数,上面的解答显然是不知道这点,无故得出切线的斜率为1显然是错误的。

[对症下药] 填。∵=3x2 当x=1时f’(1)=3.由导数的几何意义知,曲线在点(1,1)处的斜率为3。即切线方程为y-1=3(x-1) 得y=3x-2.联立得交点(2,4)。又y=3x-2与x轴交于(,0)。∴三条直线所围成的面积为S=×4×(2-)=。

2.设t≠0,点P(t,0)是函数=x3+ax与g(x)=bx3+c的图像的一个公共点,两函数的图像在P点处有相同的切线。(1)用t表示a、b、c;(2)若函数y=f(x)-g(x)在(-1,3)上单调递减,求t的取值范围。

[考场错解] (1)∵函数=x3+ax与g(x)=bx2+c的图像的一个公共点P(t,0).∴f(t)=g(t)t3+at=bt2+c. ①又两函数的图像在点P处有相同的切线,∴f’(t)=g’(t) 3t3+a=2bt. ②由①得b=t,代入②得a=-t2.∴c=-t3.

[专家把脉] 上面解答中得b=t理由不充足,事实上只由①、②两式是不可用t表示a、b、c,其实错解在使用两函数有公共点P,只是利用f(t)=g(t)是不准确的,准确的结论应是f(t)=0,即t3+at=0,因为t≠0,所以a=-t2.g(t)=0即bt2+c=0,所以c=ab又因为f(x)、g(x)在(t,0)处有相同的切线,

所以f’(t)=g;(t).即3t2+a=2bt, ∵a=-t2, ∴b=t.因此c=ab=-t2·t=-t3.故a=-t2,b=t,c=-t3

(2)解法1 y=-g(x)=x3-t2x-tx2+t3 y’=3x2-2tx-t2=(3x+t)(x-t).

当y’=(3x+t)(x-t)<0时,函数y=f(d)-g(x)单调递减。 由y’<0,若t<0,则t

高考创新思维方法归纳

(一)解析几何中的运动问题

解析几何中的创新小题是新课标高考中出现频率最高的题型,09、10、11年高考数学选择填空压轴题都出现了运动问题。即新课标高考数学思维从传统分析静态模型转变为分析动态模型。因此考生需要掌握在运动过程中对于变量与不变量的把握、善于建立运动过程中直接变量与间接变量的关系、以及特殊值情境分析、存在问题与任意问题解题方法的总结

在解此类创新题型时,往往需要融入生活中的很多思想,加上题目中所给信息相融合。在数学层面上,需要考生善于从各个角度与考虑问题,将思路打开,同时善于用数学思维去将题目情境抽象成数学模型。

(二)新距离

近几年兴起的关于坐标系中新距离d=|X1-X2|+|Y1-Y2|的问题,考生需要懂得坐标系中坐标差的原理,对于对应两点构成的矩形中坐标差的关系弄清楚就行了。近两年高考大题中均涉及到了新距离问题,可是高考所考察的内容不再新距离本身,而在于建立新的数学模型情况下,考生能否摸索出建立数学模型与数学思维的关系。比如2011年压轴题,对于一个数列各个位做差取绝对值求和的问题,由于每个位取值情况均相同,故只需考虑一个位就行了。在大题具体解题中笔者会详细叙述。

(三)新名词

对于题目中出现了新名词新性质,考生完全可以从新性质本身出发,从数学思维角度理解新性质所代表的数学含义。此类创新题型就像描述一幅画一样去描述一个数学模型,然后描述的简洁透彻,让考生通过此类描述去挖掘性质。新课标数学追求对数学思维的自然描述,即不会给学生思维断层、非生活常规思路(北京海淀区2012届高三上学期期末考试题的解析几何大题属于非常规思路)。比如2009年北京卷文科填空压轴题,就是让学生直观形象的去理解什么叫做孤立元,这样肯快就可以得到答案。

(四)知识点性质结合

此类题型主要结合函数性质、图象等知识点进行出题,此类题一般只要熟悉知识点网络结构与知识点思维方式就没有问题。比如2011年高考北京卷填空压轴题,需要考生掌握轨迹与方程思想,方程与曲线关于变量与坐标的一一对应关系。再比如2009年北京卷填空压轴题,就是对数列递推关系进行了简单的扩展,考生只要严格按照题目的规则代入就可得到答案。此类题型需要考生对于知识点的原理、思维方法有深层次的理解才能够很快做出答案。上面提到的两道题均没有考对应知识点的细节处理问题,而是上升的数学思维方法的层次。

(五)情境结合题

此类题型属于与现实模型、数学特殊模型等相结合的题目。此类题型主要考察学生对于具体数学情境的体会,比如2010年填空压轴题是正方形在坐标轴上旋转的问题,这道题考查考生对于正方形旋转过程中指定点运动拐点的体会。此类题需要考生具有一定的数学思维推理、数学抽象归纳能力。解此类题只需像分析物理模型一样去分析题目所给出的具体情境,即可将原题进行分解。


高考冲刺数学易错题汇集相关文章

一键复制全文保存为WORD