高中数学在解题时,掌握解题思路是解答数学题时不可缺少的一步。下面是小编整理的高中数学答题掌握五大思路,具体内容如下。
高中数学答题掌握五大思路
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
高中数学中,很多同学对立体几何和解析几何是又愁又怕,“几何,几何,尖尖角角,又不好看,又不好学”。其实几何是最具有形象性的一门科学,只要思想上重视,又在学习方法上下功夫,是完全可以学好的。那么我们如何练好图功呢?
1、立足课本,夯实基础。对基础知识的掌握一定要牢固,在这个基础上我们才能谈如何学好的问题。课本有三大方面我们一定要留意,一个是几何的概念,包括定义——对概念的判断、图形——对定义的直观形象描绘;一个是例题,课本的例题都比较简单,我们连例题都不弄清楚,怎么面对复杂多变的考题;再有一个是课后习题,大部分是比较典型的,考试常出现的,不能不做总结。
2、熟悉解题的常见着眼点,常用辅助线作法。把大问题细化成各个小问题,从而各个击破,解决问题。在我们对一个高中数学问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决问题的着眼点。辅助线是非常好用的解题法宝,遇到题目,心里必须清楚都有哪些辅助线可作,然后再具体问题具体分析。
3、训练直观思维。即根据书上的图形,动手动脑用硬纸板、橡皮泥等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力。
4、明确几何语言。几何语言又分为文字语言和符号语言,几何语言总是和图形相联系。很多同学能把高中数学问题想清楚,但是一落在纸面上,不成话。需要记的一句话:几何语言最讲究言之有据,言之有理。也就是说没有根据的话不要说, 不符合定理的话不要说。
5、训练想像力。有的问题既要凭借图形,又要进行抽象思维。同学们不但要学会看图,而且要学会画图,通过看图和画培养自己的空间想象能力比如,几何中的“点”没有大小,只有位置。现实生活中的点和实际画出来的www.ccutu.com点就有大小。所以说,几何中的“点”只存在于大脑思维中。
高中数学学习技巧
只有审好题才能答好题 ,审好题是解好高中数学题的前提和关键所在 。因此,要提高解题能力,就必须从学会审题开始。如何提高自己的审题能力呢?
1、提炼重点,培养高中数学审题的准确性
在审题时,同学们要透过复杂的题干部分,找出重点,理解题意,特别要注意题目中的关键词语。所谓关键词语,就是是题目涉及的数学知识,及具体数据,已知条件等,忽略了它们,往往使解题过程变得盲目,思维陷入困境。
2、充分挖掘,培养审题的深刻性
有些高中数学题目的部分条件并不明确给出,而是隐含在文字叙述之中。把隐含条件挖掘出米,常常是解题的关键所在,对题目隐含条件的挖掘,都要仔细思考除了明确给出的条件以外,是否还隐含着更多的条件,这样才能准确地理解题意。
3、善用图纸,培养审题的灵活性
当题目的信息被感知时,我们可以将其中一部分信息用简短的形式记录在草稿纸上。示意图是记录信息的一种极好的方式,它能整体地、动态地反映事物的运动变化过程。睹图凝思实际上是视觉化思维参与了解题过程,问题就可以解决得更快,失误也更少。