高中高考数学重要知识点总结如何写呢?有很多的同学是非常的想知道,高中数学有哪些重要的知识点的,以下是小编精心收集整理的高中高考数学重要知识点总结,下面小编就和大家分享,来欣赏一下吧。
高中高考数学重要知识点总结
1、知识范围
(1)函数的概念
函数的定义、函数的表示法、分段函数、隐函数
(2)函数的性质
单调性、奇偶性、有界性、周期性
(3)反函数
反函数的定义、反函数的图像
(4)基本初等函数
幂函数、指数函数、对数函数、三角函数、反三角函数
(5)函数的四则运算与复合运算
(6)初等函数
2、要求
(1)理解函数的概念,会求函数的表达式、定义域及函数值,会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
1、知识范围
(1)向量的概念
向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表示法、向量的方向余弦
(2)向量的线性运算
向量的.加法、向量的减法、向量的数乘
(3)向量的数量积
二向量的夹角、二向量垂直的充分必要条件
(4)二向量的向量积、二向量平行的充分必要条件
2、要求
(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。
(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。
(3)熟练掌握二向量平行、垂直的充分必要条件。
1、知识范围
(1)导数概念
导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系
(2)求导法则与导数的基本公式
导数的四则运算、反函数的导数、导数的基本公式
(3)求导方法
复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数
(4)高阶导数
高阶导数的定义、高阶导数的计算
(5)微分
微分的定义、微分与导数的关系、微分法则一阶微分形式不变性
2、要求
(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。
(2)会求曲线上一点处的切线方程与法线方程。
(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。
(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
(5)理解高阶导数的概念,会求简单函数的阶导数。
(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。
高考数学必备公式汇总
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积计算公式
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
椭圆形物体 体积计算公式椭圆 的 长半径__短半径__PAI__高
弧长公式 l=a__r a是圆心角的弧度数r >0 扇形面积公式 s=1/2__l__r
锥体体积公式 V=1/3__S__H 圆锥体体积公式 V=1/3__pi__r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s__h 圆柱体 V=pi__r2h
图形周长 面积 体积公式
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积
已知三角形底a,高h,则S=ah/2
已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)
和:(a+b+c)__(a+b-c)__1/4
高考数学考前复习注意事项
1、要有针对性地做题,典型的题目,应该规范地完成,同时还应了解自己,有选择地做一些课外的题。
2、要循序渐进,由易到难,要对做过了典型题目有一定的体会和变通,即按“学、练、思、结”程序对待典型的问题,这样做能起到事半功倍的效果。
3、是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。
4、独立思考是数学的灵魂,遇到不懂或困难的问题时,要坚持独立思考,不轻易问人,不要一遇到不会的东西就马上去问别人,自己不动脑子,专门依赖别人,而是要自己先认真地思考一下,依靠自己的努力克服其中的某些困难,经过很大的努力仍不能解决的问题,再虚心请教别人,请教时,不要把问题问得太透。学会提出问题,提出问题往往比解决问题更难,而且也更重要。