总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,不妨让我们认真地完成总结吧。我们该怎么写总结呢?
姓名:
国籍:中国
目前所在地:广州
民族:汉族
户口所在地:惠州
身材:160 cm 50 kg
婚姻状况:未婚
年龄:23岁
培训认证:
诚信徽章:
求职意向及工作经历
人才类型:普通求职
应聘职位:市场销售/营销类:网上营销、客户服务类:客服专员、其它类:销售跟单
工作年限:3
职称:中级
求职类型:全职可到职—随时
月薪要求:20xx——3500
希望工作地区:广州
个人工作经历:
公司名称:广州摩拉网络科技有限公司(服装)
起止年月:20xx年xx月xx日 ~ 20xx年xx月xx日
公司性质:民营企业所属行业:纺织,服装
担任职务:担任客服
工作描述:接听400客服热线,处理日常的售后服务。
主要包括:
1、客户挽留、换货或退货处理、投诉处理等。
2、提升客户服务满意度、客户关怀度。
3、客户回访以及辅助销售。
4、服务建议以意见反馈。擅长沟通,能处理突发事件,积累了不少销售经验,业绩突出。
离职原因:
公司名称:纺织公司
起止年月:20xx年xx月xx日~20xx年xx月xx日
公司性质:民营企业
所属行业:纺织,服装
担任职务:跟单员
工作描述:负责系统开单、报单以及客情维护,对梭织面料,报价,质量,货期控制有丰富经验
离职原因:
教育背景
毕业院校:广州纺织学院
学历:中专毕业— 20xx—07—01
所学专业一:计算机应用
所学专业二:
受教育培训经历:
起始年月终止年月学校(机构)专业获得证书证书编号
20xx—09 20xx—07广州纺织学院计算机荣获计算机二级证
1.有理数的。加法运算:同号相加一边倒;异号相加大减小,符号跟着大的跑;绝对值相等零正好。【注】大减小是指绝对值的大小。
2.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
3.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
4.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
5.恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
6.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
7.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放 �、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
相信上面对数学中实数与数轴知识点的内容总结学习,可以很好的帮助同学们对此知识点的巩固学习吧,希望同学们会学习的更好。
中考数学知识点之实数大小的比较
下面是对数学的学习中,关于实数大小的比较知识学习,希望同学们很好的掌握。
实数大小的比较
1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
相信上面对数学中实数大小的比较知识点的讲解学习之后,同学们对上面的知识已经能很好的掌握了吧,希望同学们都能考试成功。
中考数学知识点之实数中的几个概念
关于数学中队友实数中的几个概念知识,我们做下面的讲解学习,相信可以很好的帮助同学们的学习。
实数中的几个概念
1、相反数:只有符号不同的`两个数叫做互为相反数。(1)实数a的相反数是-a;(2)a和b互为相反数a+b=0
2、倒数:(1)实数a(a≠0)的倒数是;(2)a和b互为倒数;(3)注意0没有倒数
3、绝对值:(1)一个数a的绝对值有以下三种情况:(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n次方根(1)平方根,算术平方根:设a≥0,称叫a的平方根,叫a的算术平方根。(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。(3)立方根:叫实数a的立方根。(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
通过上面对实数中的几个概念知识点的内容总结学习,希望同学们都能很好的掌握上面的知识点,相信同学们会从中学习的更好的。
中考数学知识点之实数的分类
下面是对数学中实数的分类知识点的内容讲解学习,希望同学们对下面的知识点都能很好的掌握。
实数的分类:
1、有理数:任何一个有理数总可以写成的形式,其中p、q是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如、;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、°等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
以上对数学中实数的分类知识点的内容总结学习,相信同学们已经能很好的掌握了吧,希望同学们考试成功。
初中数学三角形内角定理知识点讲解
以下是对数学中三角形内角定理知识的内容讲解学习,相信可以很好的帮助同学们对此知识点的巩固学习吧。
三角形内角定理
定理:三角形两边的和大于第三边
推论:三角形两边的差小于第三边
三角形内角和定理:三角形三个内角的和等于180°
推论1:直角三角形的两个锐角互余
推论2:三角形的一个外角等于和它不相邻的两个内角的和
推论3:三角形的一个外角大于任何一个和它不相邻的内角
通过上面对数学中三角形内角定理知识点的讲解学习,相信可以很好的帮助同学们对此知识的学习了吧,希望同学们都能考试成功。
初中数学平行定理知识点讲解
如果一组等距的平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
平行定理
平行定理:经过直线外一点,有且只有一条直线与这条直线平行
推论:如果两条直线都和第三条直线平行,这两条直线也互相平行
证明两直线平行定理:
同位角相等,两直线平行
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行推论:
两直线平行,同位角相等
圆
1、定义:圆是到定点的距离等于定长的点的集合
2、点与圆的位置关系:
如果⊙O的半径为r,点P到圆心O的距离为d,那么
点P在圆内,则dr;
点P在圆上,则dr;
点P在圆外,则dr;反之亦成立。
圆的对称性
一、圆是中心对称图形,圆心是它的对称中心。
定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
圆心角的度数与它所对的弧的度数相等。
二、圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
圆周角
定义:顶点在圆上,并且两边都和圆相交的角叫做圆周角
定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。
定理:直径(或半圆)所对的圆周角是直角。90o的圆周角所对的弦是直径。
确定圆的条件
结论:不在同一条直线上的三点确定一个圆
三角形的外接圆(三角形的外心):三角形的外心是三角形中3边垂直平分线的交点,三角形的外心到三角形各顶点的距离相等。
注:直角三角形的外心是斜边的中点,外接圆的半径等于斜边的一半。
直线与圆的位置关系
一、三种位置关系:相交、相切、相离
如果⊙O的半径为r,圆心O到直线l的距离为d,那么
直线l与⊙O相交,则dr;
直线l与⊙O相切,则dr;
直线l与⊙O相离,则dr;反之亦成立。
二、圆的切线的性质及判定
定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
两种方法:连半径,证垂直;作垂直,证半径
定理:圆的切线垂直于过切点的半径
三角形的内切圆(三角形的内心):三角形的内心是三角形中3条角平分的交点,三角形的内心到三角形各边的距离相等。
注:求三角形的内切圆的半径通常用面积法,特殊地,直角三角形内切圆的半径=a?b?c(其中c为斜边) 2
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
圆与圆的位置关系
五种位置关系:外离、外切、相交、内切、内含
阅读材料:如果两个圆相切,那么切点一定在连心线上相交两圆的连心线垂直平分两圆的公共弦。
正多边形与圆
各边相等、各角也相等的多边形叫做正多边形。
正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。
注:与正多边形有关的计算
姓 名:
国籍: 中国
目前所在地: 越秀区
民族: 汉族
户口所在地: 越秀区
身材: 172 cm 68 kg
婚姻状况: 未婚
年龄: 24
培训认证:
诚信徽章:
求职意向及工作经历
人才类型: 普通求职
应聘职位: 客服及技术支持:不限、行政/后勤:
工作年限: 3
职称: 无职称
求职类型: 全职
可到职日期: 随时
月薪要求: 2000--3500
希望工作地区: 广州 珠海 深圳
个人工作经历:
公司名称:中国通信有限公司(中国电信10000号)
起止年月:20xx年xx月xx日 ~ 20xx年xx月xx日
公司性质: 国有企业
所属行业:服务业
担任职务: 话务员
工作描述: 20xx年1月至今,此段期间在中国电信10000号的话务运营3部任职话务员工作,主要负责客户的咨询,受理,和投诉的工作。每天应对上百个客户,有很好的沟通能力和独立处理不同突发事情的应对能力。
离职原因:
公司名称:广州市粤河投资发展有限公司
起止年月:20xx年xx月xx日 ~ 20xx年xx月xx日
公司性质: 民营企业
所属行业:会计/金融/银行/保险
担任职务: 出纳/人事
工作描述: 负责公司的人事事务和出纳,懂得银行与公司之间的业务操作,并处理公司的`人事招聘,后勤的工作。
离职原因:
姓名: 叶先生
国籍: 中国
目前所在地: 广州
民族: 汉族
户口所在地: 广州
身材: 165 cm 70 kg
婚姻状况: 未婚
年龄: 26 岁
培训认证:
诚信徽章:
求职意向及工作经历
人才类型: 普通求职
应聘职位: 汽车售后服务:售后服务人员、客服代表/专员/助理:文员、汽车类:技工
工作年限: 6
职称: 高级
求职类型: 全职
可到职日期: 两个星期
月薪要求: 1500--2000
希望工作地区: 广州
个人工作经历:
公司名称: 广州行安汽车科技有限公司
起止年月:20xx年xx月xx日 ~ 20xx年xx月xx日
公司性质: 国有企业
所属行业:各种车辆制造与营销
担任职务: 售后人员
工作描述: 本人于20xx年进入广州行安汽车科技有限公司,主要负责公司设备部的售后服务,作为客户与厂家之间的沟通桥梁和渠道。通过在公司的工作和学习,学会了许多与人沟通的方法和售后服务的相关知识。
离职原因: 个人发展
公司名称: 广州第二公共汽车公司
起止年月:20xx年xx月xx日 ~ 20xx年xx月xx日
公司性质: 国有企业
所属行业:各种车辆制造与营销
担任职务: 维修人员
工作描述: 本人于20xx年进入修配一厂工作,也是在同年获得了进入广州大学汽车维修及检测专业的学习机会,在这四年紧张而又充实的工作和学习里,我对于车辆的保养和维修都有了一定的理解和认识。
离职原因: 个人发展
教育背景
毕业院校: 广州大学
最高学历: 大专
获得学位: 大专
毕业日期: 20xx-07-01
所学专业一: 汽车维修及检测
所学专业二:
受教育培训经历:
起始年月 终止年月 学校(机构) 专 业 获得证书 证书编号
19xx-09 20xx-07 广州交通技工学校 汽车维修 中级维修技工证
20xx-09 20xx-07 广州大学 汽车维修及检测 大学学历(成大)
语言能力
外语: 英语 一般
国语水平: 良好
粤语水平: 优秀
工作能力及其他专长
有着4年维修汽车经验,熟悉汽车结构、原理和故障成因。能够熟练使用办公室软件,能刻苦耐劳,为人和善,有亲和力,适应力好。有C1驾照,有接听客户投诉电话、客服经验。
详细个人自传
本人有着4年的汽车维修经验,熟悉汽车的各部分的`工作原理及故障成� 我有信心面对一切的困难和挑战,以最佳的状态,投入工作。
个人联系方式
通讯地址:
联系电话:
一、圆及圆的相关量的定义(28个)
1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定�
2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
二、有关圆的字母表示方法(7个)
圆--⊙半径r弧--⌒直径d
扇形弧长/圆锥母线l周长C面积S三、有关圆的基本性质与定理(27个)
1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
P在⊙O外,POP在⊙O上,PO=r;P在⊙O内,PO
2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5.一条弧所对的'圆周角等于它所对的圆心角的一半。
6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
7.不在同一直线上的3个点确定一个圆。
8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9.直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):
AB与⊙O相离,POAB与⊙O相切,PO=r;AB与⊙O相交,PO
10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11.圆与圆的位置关系(设两圆的半径分别为R和r,且Rr,圆心距为P):
外离P外切P=R+r;相交R-r
三、有关圆的计算公式
1.圆的周长C=2d2.圆的面积S=s=3.扇形弧长l=nr/180
4.扇形面积S=n/360=rl/25.圆锥侧面积S=rl
四、圆的方程
1.圆的标准方程
在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是
(x-a)^2+(y-b)^2=r^2
2.圆的一般方程
把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是
x^2+y^2+Dx+Ey+F=0
和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2
相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.
五、圆与直线的位置关系判断
链接:圆与直线的位置关系(一。5)
平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是
讨论如下2种情况:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
如果b^2-4ac0,则圆与直线有2交点,即圆与直线相交
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切
如果b^2-4ac0,则圆与直线有0交点,即圆与直线相离
(2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)
将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2
令y=b,求出此时的两个x值x1,x2,并且我们规定x1
当x=-C/Ax2时,直线与圆相离
当x1
当x=-C/A=x1或x=-C/A=x2时,直线与圆相切
姓名:
民族:汉族
照片:
身高:160cm
婚姻状况:未婚
求职意向及工作经历
人才类型:普通求职
应聘职位:客服//导购//餐饮类的。相关职务
求职类型:全职
可到职:随时
月薪要求:1350——2000
教育背景
毕业院校:安徽电子信息职业技术学院
最高学历:大专
所学专业:市场营销
所获荣誉及证书:国家励志奖学金/获“优秀学生”称号/国家计算机二级(access)证书
荣获校“营销策划”三等奖/校大学生励志成才演讲比赛三等奖等等
工作能力及其他专长
在校期间,我参加很多实践活动,曾荣获水果拼盘比赛一等奖,校园风采设计大赛等奖,“五味俱全”智力比赛三等奖
我曾做过很多兼职,比如:促销员、英语家教、服务员、在服装厂做过副工、在影楼做过蜂王等等
详细个人自传
本人自信,开朗。有强烈的事业心和责任感,良好的语言组织能力和沟通能力,对工作认真负责,吃苦耐劳,敏于接受新事物和新思想,能很快适应新的工作环境,并能很快掌握工作技巧。
圆的初步认识
一、圆及圆的相关量的定义(28个)
1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定�
2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
二、有关圆的字母表示方法(7个)
圆--⊙ 半径r 弧--⌒ 直径d
扇形弧长/圆锥母线l 周长C 面积S三、有关圆的基本性质与定理(27个)
1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
P在⊙O外,POP在⊙O上,PO=r;P在⊙O内,PO
2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5.一条弧所对的圆周角等于它所对的圆心角的一半。
6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
7.不在同一直线上的3个点确定一个圆。
8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9.直线AB与圆O的位置关系(设OPAB于P,则PO是AB到圆心的距离):
AB与⊙O相离,POAB与⊙O相切,PO=r;AB与⊙O相交,PO
10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11.圆与圆的位置关系(设两圆的半径分别为R和r,且Rr,圆心距为P):
外离P外切P=R+r;相交R-r
三、有关圆的计算公式
1.圆的周长C=2d 2.圆的面积S=s=3.扇形弧长l=nr/180
4.扇形面积S=n/360=rl/2 5.圆锥侧面积S=rl
四、圆的方程
1.圆的标准方程
在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是
(x-a)^2+(y-b)^2=r^2
2.圆的一般方程
把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是
x^2+y^2+Dx+Ey+F=0
和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2
相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.
五、圆与直线的位置关系判断
链接:圆与直线的位置关系(一。5)
平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是
讨论如下2种情况:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
如果b^2-4ac0,则圆与直线有2交点,即圆与直线相交
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切
如果b^2-4ac0,则圆与直线有0交点,即圆与直线相离
(2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)
将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2
令y=b,求出此时的两个x值x1,x2,并且我们规定x1
当x=-C/Ax2时,直线与圆相离
当x1
当x=-C/A=x1或x=-C/A=x2时,直线与圆相切
圆的定理:
1不在同一直线上的三点确定一个圆。
2垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2
1圆的两条平行弦所夹的弧相等
3圆是以圆心为对称中心的中心对称图形
4圆是定点的距离等于定长的点的集合
5圆的内部可以看作是圆心的距离小于半径的点的集合
6圆的外部可以看作是圆心的距离大于半径的点的集合
三角函数关系
倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
倒数关系
对角线上两个函数互为倒数;
商数关系
六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的'乘积,下面4个也存在这种关系。)。由此,可得商数关系式。
平方关系
在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
锐角三角函数定义
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
正割(sec)等于斜边比邻边;secA=c/b
余割(csc)等于斜边比对边。cscA=c/a
互余角的三角函数间的关系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
二次根式的加减法
知识点1:同类二次根式
(Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。
(Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。
知识点2:合并同类二次根式的方法
合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。
知识点3:二次根式的加减法则
二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。
知识点4:二次根式的混合运算方法和顺序
运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。
知识点5:二次根式的加减法则与乘除法则的区别
乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。
1.重心和三角形3个顶点组成的3个三角形面积相等。
2.重心到三角形3个顶点距离的平方和最小。
3.在平面直角坐标系中,重心的坐标是顶点坐标的`算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3
4.重心到顶点的距离与重心到对边中点的距离之比为2:1。
5.重心是三角形内到三边距离之积最大的点。
如果用塞瓦定理证,则极易证三条中线交于一点。
(一)导数第一定义
设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)—f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第一定义
(二)导数第二定义
设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x—x0也在该邻域内)时,相应地函数变化△y=f(x)—f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第二定义
(三)导函数与导数
如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y,f(x),dy/dx,df(x)/dx。导函数简称导数。
(四)单调性及其应用
1、利用导数研究多项式函数单调性的一般步骤
(1)求f(x)
(2)确定f(x)在(a,b)内符号(3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数
2、用导数求多项式函数单调区间的一般步骤
(1)求f(x)
(2)f(x)>0的解集与定义域的交集的对应区间为增区间;f(x)<0的解集与定义域的交集的对应区间为减区间。
一、目标与要求
1.了解一元二次方程及有关概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,应用一元二次方程概念解决一些简单题目。
2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程,掌握依据实际问题建立一元二次方程的数学模型的方法,应用熟练掌握以上知识解决问题。
二、重点
1.一元二次方程及其它有关的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。
2.判定一个数是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次──转化的数学思想。
5.利用实际问题建立一元二次方程的数学模型,并解决这个问题。
三、难点
1.一元二次方程配方法解题。
2.通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
3.用公式法解一元二次方程时的讨论。
4.通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程实际问题的数学模型,方程解与实际问题解的区别。
6.由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。
7.知识框架
四、知识点、概念总结
1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四个特点:
(1)含有一个未知数;
(2)且未知数次数最高次数是2;
(3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)
3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
姓名:王先生
目前所在: 荔湾区
年 龄: 26
户口所在: 河南
国 籍: 中国
婚姻状况: 未婚
民 族: 汉族
身 高: 175 cm
体 重: 70 kg
求职意向
人才类型: 普通求职
应聘职位: 客服专员/助理/网络客服/投诉专员
工作年限: 3
职 称: 无职称
求职类型: 全职
可到职日期: 随时
月薪要求: 20xx~3499元
希望工作地区: 广州,广州,广州
工作经历
xx公司
起止年月:20xx-12 ~ 20xx-05
公司性质: 私营企业
所属行业:贸易/消费/制造/营运
担任职位: 销售客服
工作描述:
1、了解客户的需求,认真耐心答复客户提出的各种问题,提升客户购物体验,营造良好的`购物气氛,促成客户成交。 进行有效跟踪,做好售前、售后引导和服务工作;
2、熟练运用公司产品,解答客户提问并落实问题;
3、根据淘宝的各种操作规则和公司的规定,处理客户的咨询、投诉及纠纷等。
4、负责缺断货订单处理、售后退换货、快递异常等问题的处理;与相关部门进行协调沟通以保证订单的执行。
5、回复顾客评价、处理后台顾客投诉以及店铺中差评;
6、做好记录,把各类投诉及问题进行分类并汇总 ;
7、收集客户及相关市场资料,建立和管理客户档案和信息数据库
8、维护老客户,开发新客户。
离职原因:
教育背景
毕业院校: 中南大学
最高学历: 大专
获得学位: 大专
毕业日期: 20xx-06
专 业 一: 计算机应用
专 业 二: 电子商务
起始年月 终止年月 学校(机构) 所学专业 获得证书 证书编号
20xx-09 20xx-06 中南大学 计算机应用
语言能力
外语: 英语 一般
粤语水平: 一般
其它外语能力: 计算机语言
国语水平: 优秀
工作能力及其他专长
1、了解市场现状与客户需求,有淘宝客服经验
2、很强的沟通能力与技巧,普通话标准,
3、较强的应变能力、协调能力,能独立处理紧急问题;
4、工作积极主动、良好的服务意识、有耐心、乐于助人;
5、有强烈的责任感及学习能力、诚实正直;
6、具备良好的心理素质,能适应快节奏高效率的工作环境,有团队合作精神