作为一名默默奉献的教育工作者,总归要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么问题来了,教学设计应该怎么写?
学习目标:
1、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
2、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
3、激情投入,挑战自我。
教学重点:求一个数倒数的方法。
教学难点:1和0倒数的问题。
教学过程:
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经 )就先聊到这儿吧?好,上课!
一、导入:
同学们,在上数学课之前,老师想考你们一个语文知识,怎么样?(出示“杏”和“呆”)看到这两个字,你发现了什么?
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?
二、合作探究:
(一)揭示倒数的意义
1、(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)
师板书:乘积是1的两个数互为倒数。
� 就像课前我们聊得话题,老师和�
(二)小组探究求一个倒数的方法
1、出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)
师板书:求倒数的方法:分数的分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2、师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3、出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)
4、探讨带分数、小数的倒数的求法
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。(课件出示)
你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。
(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。
当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:
发现1:带分数的倒数都(小于)本身;
发现2:比1小的小数的倒数都(大于)本身,并且都(大于)1。
发现3:比1大的小数的倒数都(小于)本身,并且都(小于)1。
(三)学以致用:
师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。
1、想不想检验一下自己学的怎么样?
请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。
2、(课件出示)请你以打手势的形式告诉老师你的答案。
(四)全课总结
今天学习了什么?我们一起回顾总结出来好吗?
什么叫倒数?怎样找出一个数的倒数?
教学重点:
认识倒数并掌握求倒数的方法
教学难点:
小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,。.。.。.不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,。.。.。.但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的`倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
教学目标:
1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。
2、培养学生观察、归纳、推理和概括的能力。
教学过程
一、创设活动情景,引入概念。
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。
让学生读一读:倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、 探究讨论,深入理解。
让学生说说对到数意义的理解。
提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述?
因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。
三、运用概念,探讨方法。
出示例2,找一找那两个数互为倒数?
汇报找的结果,并说一说怎样找到的?
1,看两个分数的乘积是不是1;
2,看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
分子、分母交换位置
例:3/55∕3 3∕5的倒数是5∕3
(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。
分子、分母交换位置
例:6=1∕6 6的倒数是1∕6.
四、出示特例,深入理解
看一看。例2中的那些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
因为11=1,根据乘积是1的两个数互为倒数,所以1的倒数是1. 交换分子、分母的位置
也可以这样推导:1= 1∕1=1,1的倒数是1.
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
交换分子、分母的位置
也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。
五、巩固练习
1、完成做一做,先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
六、总结
今天学习了什么?
什么叫倒数?怎样找到一个数的倒数?
教学内容 教科书第28~29页例1、“做一做”及相关内容。
教学目标
1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。
2.使学生体验找一个数的倒数的方法,会求一个数的倒数。
3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。
教学重点 理解倒数的意义;求一个数的倒数。
教学难点 理解“互为倒数”的含义。
教学准备 教学课件、写算式的卡片。
教学过程 具体内容 修订
基本训练,强化巩固。
(3分钟) 1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。
2.学生独立完成上面几组题,小组内检查并订正。
创设情境,激趣导入。
(2分钟) 请个别学生说说分数乘法的计算方法,突出分子与分母的约分。
提示目标,明确重点。
(1分钟) 通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。
学生自学,教师巡视。
(6分钟) 1. 观察这些算式,如果将它们分成两类,怎样分?
2.通过观察发现算式的特点。
展示成果,体验成功。
(4分钟) 让学生说说乘积为1的算式有什么特点。
学生讨论,教师点拨。
(8分钟) 1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。
2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。
3.引导学生思考:互为倒数的两个数有什么特点?
4.探讨求倒数方法。
(1)出示例题,让学生说说哪两个数互为倒数。
(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书
教学重点:
认识倒数并掌握求倒数的方法
教学难点:
小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
四、训练、深化
1.下面哪两个数互为倒数
(出示课件一下载)
2.求出下面各数的倒数
(出示课件二下载)
3.判断
①真分数的倒数都是假分数。( )
②假分数的倒数都小于1。( )
③0没有倒数。( )
4.提高
会填了吗?
如果末尾加上=1怎么填?
如果末尾加上=0怎么填?
如果末尾加上=2怎么填?
五、课堂小结
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?
六、课后作业
练习六2、3
学习目标:
1、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
2、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
3、激情投入,挑战自我。
教学重点:
求一个数倒数的方法。
教学难点:
1和0倒数的问题。
教学过程:
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经 )就先聊到这儿吧?好,上课!
一、导入:
同学们,在上数学课之前,老师想考你们一个语文知识,怎么样?(出示“杏”和“呆”)看到这两个字,你发现了什么?
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?
二、合作探究:
(一)揭示倒数的意义
1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)
师板书:乘积是1的两个数互为倒数。
� 就像课前我们聊得话题,老师和�
(二)小组探究求一个倒数的方法
1.出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)
师板书:求倒数的方法:分数的分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3.出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)
4.探讨带分数、小数的倒数的求法
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。(课件出示)
你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。
(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。
当你给带分数、小于1的小数、大于1的`小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:
发现1:带分数的倒数都(小于)本身;
发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。
发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。
(三)学以致用:
师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。
1.想不想检验一下自己学的怎么样?
请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。
2.(课件出示)请你以打手势的形式告诉老师你的答案。
(四)全课总结
今天学习了什么?我们一起回顾总结出来好吗?
什么叫倒数?怎样找出一个数的倒数?
教学内容:数学第十一册19页----倒数的认识。
教学目标:
(1)知识目标:理解倒数的意义,掌握求倒数的方法。
(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。
教学重点:理解倒数的意义和怎样求一个数的倒数。
教学难点:正确理解倒数的意义及0为何没有倒数。
一、游戏导入
教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)
二、探究意义
1、找特点
师:请同学们观察黑板上四组数都有什么特点。
(生:分子、分母互相颠倒 )
师:请同学们把每一组中的两个数相乘,看乘积是多少?
(生:每一组中的两个数乘积都是1 )师及时板书
师:谁还能很快说出乘积是1的两个数吗?
(生回答)
师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?
(生:两个数分子分母颠倒位置乘积是1)
师:那么乘积是1 的两个数数学给它起个什么名呢?
(生回答,师板书:乘积是1 的两个数叫互为倒数)
师:在这个概念中�
重点讲解“互为”的意思,就是互相是的意思。例如:
3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。
师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。
(指名叙述)
师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。
三、探究求倒数的方法。
师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。
出示:3/5 7/2 8/6 5/12 10/4
(指名回答师板书)
师:你们是怎么找出每个数的倒数的?
(说自己的方法)
师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。
出示:6 0.5 2 7/8 1
(生回答,师板书)并说说你是怎样求的?
师:是不是所有的数都有倒数呢?同桌讨论
0为什么没有倒数?(0和任何数相乘都不得1)
师:通过同学们的练习,谁来总结求一个数的倒数的方法?
(生总结,师板书)
四、小结并揭示课题
同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。
五、巩固练习。
1、填空
1、乘积是()的两个数叫()倒数。
2、因为7/15 x 15/7 =1 所以7/15和15/7( )
3、 5的倒数是( )。 0.2的倒数是( )。
4、()的倒数是它本身。()没有倒数。
5、8×()=1 0.25×()= 1
()×2/3=1 7/2×( )=( )×8=( )×0.15 =1
2、当把小医生。
1、得数是1的两个数叫互为倒数。()
2a是一个整数,它的倒数一定是 1/a 。()
3、因为2/3×3/2=1,所以2/3是倒数。()
4、1的倒数是1,所以0的倒数是0。()
5、真分数的倒数都大于1。()
6、2.5和0.4 互为倒数。()
7、任何真分数的倒数都是假分数。()
8、任何假分数的倒数都是真分数。()
3、面各数的倒数
2.5 4 1/8 2 6/7 0.12
4、列式计算
1、7/6加上它的倒数的和乘2/3,积是多少?
2、 1减去它的倒数后除以0.12,商是多少?
3、已知A×3/2=B×3/5,(A、B都是不为0的数)
求A、B的大小
六、教学反思:
倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。
“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。
今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的'特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,。.。.。.不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,。.。.。.但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
学习内容:人教版义务教育教科书数学六年级上册P28—29
学习目标:
(1)理解倒数的意义及倒数的特点,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)采用自主探究与合作交流的方法,进一步培养学生的自主学习能力,提高学生观察、比较、归纳、概括以及合作学习的能力。
(3)通过亲身参与探究活动,体验数学学习的乐趣,激发积极的学习情感,培养学生学会与人合作,愿与人交流的习惯。
学习重点:倒数的意义、特点和求倒数的方法。
学习难点:1和0的倒数的求法。
学习过程:
一、创设情境,激趣导学。
1.出示算式,找特征。
先计算,再观察,看看有什么规律。
×=1×=15×=1×12=1
问:“你发现了什么?”
2.引出倒数的定义。让学生看书。
3.揭题:今天我们就来学习“倒数的意义”(板书课题)。
二、独学质疑,合作探究。
1.初步理解
我们知道×=1,那么我们可以说:“因为×=1所以和互为倒数”
这句话还可以怎么说?的倒数是,的倒数是。
你能照样子,结合黑板上的例题,说说算式中两数之间的。关系吗?
2.判断,加深理解
(1)判断正误,并说明理由。
a.和7都是倒数。(关注到了倒数的概念中关键的词语“互为”)
b.+=1,所以和互为倒数。(关注了倒数概念中关键的词语“乘积是1。”)
c.××=1,所以、、互为倒数。(关注了倒数中的关键词“两个数”)
小结:对于概念的学习,应该充分关注概念中的关键词语。
(2)请任意写出三个数的倒数,要求,写完整:谁的倒数是谁?
三、点拨互动,应用提升。
1.出示例2,找一找哪两个数互为倒数?
2.学生汇报找的结果,并说说怎样找的?
(1)看两个数的乘积是不是1。
(2)看两个数的分子与分母是否交换了位置。
3.根据寻找出的结果,探究倒数的特点。
4.这两种方法,哪一种比较快?
5.设问:1和0有没有倒数?如果有,是多少?
(1)分组讨论。(2)学生汇报。
四、检测诊断,总结评价。
1.基本练习:完成教科书P28的做一做,然后集体订正。
2.加深练习:倒数一定比它本身要小吗?探究什么数的倒数比它本身要大,什么数的倒数比它本身要小。