作为一名教学工作者,通常需要用到教案来辅助教学,借助教案可以提高教学质量,收到预期的教学效果。那么优秀的教案是什么样的呢?以下是人见人爱的小编分享的四年级数学教案优秀9篇,如果对您有一些参考与帮助,请分享给最好的朋友。
教学目标:
1、体会较大数据的实际意义,能比较数的大小。
2、在描述数据的过程中,体会将某些数据单位改写的必要性,能用万、亿为单位表示大数。
3、培养同学们学习数学探索数学的兴趣。
教学重点:
探究较大数据单位改写的方法。
教学过程:
一、创设情境,学习新知。
1、师:让大家通过网络收集一些数据,在这些数据中,有的数据后面有“万”,有的“亿”,为什么要这样表示呢?今天这节课我们一起来研究。
2、出示中国地图。
3、提问:我国的陆地面积约是多少平方千米吗?
在学生回答的基础上,出示:9600000平方千米。
4、师:你还知道我国哪些省市自治区的土地面积?请说一说。
出示四个数据
(1)黑龙江省土地面积约450000平方千米。
(2)江苏省土地面积约是100000平方千米。
(3)新疆维吾尔自治区土地面积1660000平方千米。
(4)西藏自治区土地面积约1220000平方千米。
请同学们在地图上找一找,看一看,比一比。
二、结合实际背景,体会改写单位的必要性。
1、师:大家在读写这些数的时候,有些什么感受?
2、再比较分析一下课前我们收集的资料上的数据的特点,如果为了记录方便,这些数据可以怎么进行改写。
三、探究改写方法。
1、师:你知道这些数据的计数单位是什么吗?
它们是以“一”为单位,一般以“一”为单位是不写计数单位的,怎么把这些单位是“一”的数进行改写呢?
2、分小组讨论,探究改写方法。
3、观察这些数据的基本特点,从中发现改写的基本方法
9600000=960万;450000=45万
1660000=166万;100000=10万
1220000=122万;10000000000=100亿
300000000=3亿
师:为什么同样的数据要用不同的方法表示?
四、比较大小。
1、让学生思考一下,万以内的数的大小比较是怎么比较的,并在小组内交流。
2、然后让学生用自己的方法和语言表达出来,并集体交流。
五、试一试。
1、读出下面各数,并按从小到大的顺序排列。
在排列大小之前,先让学生说说排列的方法。
2、将下面各数改写成以“万”为单位的数。
让学生说说改写的方法,然后独立完成。
3、将下面各数改写成以“亿”为单位的数。
让学生说说改写的方法,然后独立完成。
六、练一练。
1、开发大西部。
练习本题时,可以先请学生说一说我国西部各省市自治区的情况以及它们的地理位置,然后出示各地区具体的土地面积,在学生读一读的基础上再请学生改写成以“万”作单位的数。有条件的学校,还可以让学生收集一些西部地区的其他数据信息,以供学生间互相进行改写。
2、海洋资源。
在练习时,可以让学生了解一些海洋的知识,特别是我国海洋的区域情况等。接着出示有关的数据,让学生读一读,然后讨论这些数据如何进行改写。
3、把下图中的点按数的大小从小到大连接起来。
对于不同的数据比较,学生可以先统一写法,再比较;也可以直接进行比较,对于学生的不同方法,只要合理,教师都应给予肯定。
板书设计:
9600000=960万;450000=45万
1660000=166万;100000=10万
1220000=122万;10000000000=100亿
300000000=3亿
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册第XX页的内容。
教学目标:
1、知识与技能
(1)通过创设问题情境、观察比较,初步感知三角形边的关系,体验学数学的乐趣。
(2)运用三角形任意两边的和大于第三边的性质,解决生活中的实际问题。
2、过程与方法
通过实践操作、猜想验证、合作探究,经历发现三角形任意两边的和大于第三边这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验做数学的成功。
3、情感与态度
(1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。
(2)学会从全面、周到的角度考虑问题。
教学重点:
理解、掌握三角形任意两边之和大于第三边的性质。
教学难点:
引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。
教学准备:
课件、学具袋。
教学过程:
(课前谈话)今天很高兴能认识各位在座的小朋友。我呀,是来自绿影小学的包老师。来之前,我就听说某某学校的小朋友,聪明伶俐,爱动脑筋,是不是这样啊?为了表扬同学们在课堂的表现,老师还特地带来了一些小奖品,瞧,都贴黑板上了。(三张不同颜色的小笑脸)你们喜欢吗?
如果你能答出老师的问题,老师就让你上来任意选一个小奖品。你们想选哪一个?有几种选法?(三种)
如果某个小朋友回答问题特别棒,老师就让你任意选两个。有几种选法?(三种)
教师:真不错,不知不觉中,同学们已经回答出老师的两个问题啦。希望大家再接再厉,在课堂上有更好的表现。
一、动手游戏,提出问题
教师:请同学们拿出你的1号学具袋,看看里面有什么? (三根小棒。)
三根小棒能围成一个三角形吗?
学生先猜。
教师:光猜可不行,知识是科学,咱们来动手围一围。
学生动手围,集体交流:有的能围成,有的不能围成。
教师请能围成和不能围成的同学分别上来展示一下。
同时板贴:能围成三角形 不能围成三角形
教师小结:随意的给你三根小棒,有的时候能围成一个三角形,有的时候不能围成一个三角形。看来呀,咱们考虑问题的时候要全面、周到。
提出问题:那么,能围还是不能围,跟三角形的什么有关系呢?
引导学生明白:跟三角形的边有关系。
教师:对,三角形的边有什么样的关系呢?同学们,你们想不想自己动手来探究这个问题呀?
板书课题:三角形边的关系(让学生收拾好一号学具袋)
设计意图:随意的给学生三根小棒,让学生先猜能否围成一个三角形,再通过动手围,发现有的三根小棒能围成三角形,有的三根小棒不能围成三角形。这不仅激活了学生的旧知,刺激了学生的思维,更激发了学生探索的欲望:能否围成一个三角形跟什么有关系,怎么的三根小棒才能围成三角形呢?
二、实践操作,探究学习
1、动手操作。
电脑出示:现有两根小棒,一根长3厘米,一根长6厘米,再配一根多长的小棒,就能围成一个三角形?
教师说明操作要求:
(1)从2号学具袋中拿出操作材料(两根小棒、作业纸和实践操作表格);
(2)在作业纸上有不同的线段,请你用两根小棒去围一围,看看是否能围成一个三角形(至少要和三条不同的线段围一围);
(3)将数据和结果填写在表格中,能围成的用表示,不能围成的用表示。
学生活动,教师巡视指导。
2、汇报交流。
教师:下面就请同学们来汇报一下你的操作结果。
请不同的学生汇报,教师在课件中输入数据和结果。如下图:
设计意图:既然已经知道能否围成一个三角形,与三角形的边有关系,所以教师先给出学生两根6厘米和3厘米的小棒,让学生通过动手操作得到,当第三边是几厘米的时候能围成三角形,直观明了,为后面的探究打好基础。
3、集体探究。
第一层次:发现不能围成的原因。
(1)教师:同学们通过动手实践,发现1厘米的小棒不能围,确定吗?咱们再来验证一下。
课件演示:当三根小棒分别是1厘米、3厘米和6厘米的时候,围不成三角形。
教师:为什么围不成?你会用一个数学关系式表示出它们的关系吗?
引导学生得出:1+36,所以围不成。
(2)教师:下面我们再来验证一下2厘米。课件演示。
教师:你发现了什么?会用一个数学关系式表示出它们的关系吗?
引导学生得出:2+36,所以围不成。
(3)教师:3厘米也不能围成,是什么原因呢?课件演示。
提问:它为什么也围不成?你会用一个数学关系式表示出它们的关系吗?
引导学生说出:3+3=6,所以不能围。
(4)提出:1厘米、2厘米和3厘米的小棒都围不成。大家观察这三道算式,谁能用一句话说说什么情况下不能围成三角形阿?
板书(补上小于等于号):两边之和第三边 不能围成三角形
设计意图:学生已经有了操作的初步体验,但是不能围成的原因是什么,却还没有发现。这里,通过课件直观、生动的演示和教师及时的启发、点拨,学生便会很快的发现不能围成三角形的原因了。
第二个层次:猜想,初步得出三角形边的性质。
教师:两边之和小于或者等于第三边,不能围成三角形。同学们猜想一下,什么情况下能围成三角形呢?
学生猜出:两边之和大于第三边。
板贴:两边之和>第三边 能围成三角形?
同时,教师在旁边画上?
初步验证猜想:
教师:这个猜想对不对呢?这需要进行验证。看看这些能围成三角形的边,是不是具备这样的关系?
教师指着4厘米,问:当第三根小棒是4厘米的时候,谁能来说一说?
同时课件进行演示,得出:4+36。 课件演示。
教师指着5厘米,问:那5厘米? 得出:5+36
教师点击:那么下面就依次类推了。课件依次出现算式:6+3 7+3 8+3 9+36
设计意图:由于有了两边之和第三边,不能围成三角形这个结论作基础,学生会自然而然地想到当两边之和大于第三边的时候就能围成三角形。这时教师及时说明,这只是猜想,要经过验证才能判断它是否正确。
第三个层次:引发矛盾,突破难点。
教师指着表格,质疑:你们有没有发现问题啊?咱们在动手操作的时候得出9厘米不能围,可是9+36呀,这符合我们刚刚得出的结论啊?
先让学生说一说,然后进行课件演示。
教师:9和3这组的两边之和是大于6,可是它能围成吗?(不能)(课件演示确实不能围成。)
教师:我们再换一组看看,3和6这组的两边之和第三边9比,什么关系?(相等)
教师:那还要看哪一组?(6和9的和与3比)
引导学生明确:只通过一组来判断能否围成三角形,全面吗?那应该怎么说?
引导学生得出任意两字。
设计意图:9+36却围不成三角形,这一下就给学生制造出了矛盾冲突,学生就会立刻思索这三边到底还存在什么样的关系,从而发现只通过一组两边的和来判断能否围成三角形是不全面的,必须要看三组,这样任意在这里的引出也就水到渠成了。
第四个层次:再次验证,明确三角形三边的关系。
教师:下面我们利用这个结论再来验证一下,这些能围成三角形的三边,是不是都具备这样的关系?每个同学选一个你喜欢的在小组内交流。
学生交流,集体汇报。
教师:在同学们的猜想前面加上任意两字,通过再次验证后,发现它就是一条正确的结论。(教师擦掉?)咱们来一起读一遍。
设计意图:加上任意两字以后,结论是不是就正确了呢?这时,让学生回过头来,再次验证能围成三角形的三边是不是具备这样的关系,不仅加深了学生对三角形边的关系的理解,也让学生充分经历了猜想验证结论这一科学的学习过程。
第五个层次:找出判断不能围成的简捷方法。
教师:在这些不能围成三角形的三边中,它们也应该有几组算式?(3组)
那我们在判断它能不能围成的时候,是不是要把三组算式都找出来啊?
引导学生明确:只要找到一组不符合能围成的条件就可以了。
教师:谁能快速地说出10不能围成的原因?
设计意图:怎样最快的找到不能围成的原因,在这里也应该让学生明确。方法最优化应随时有效地渗透在教学环节中。
第六个层次:再次验证任意,将结论从特殊扩大到一般;同时发现判断能围成三角形的简单方法。
(1)教师:刚刚咱们是给3厘米和6厘米寻找能围成三角形的第三边,得到这样的结论的。那是不是任意一个三角形的三边都具备这样的关系呢?
教师演示课件,随意拖拉两次,让学生用估算的方法说出三边的。关系。
设计意图:一开始的研究,是从给定的3厘米和6厘米的两边着手的。在这里通过课件的直观演示,将特殊情况推广到一般情况,让学生明白任意一个三角形的三边都有这样的性质。
(2)提出:在判断能围成三角形的时候有没有更简单的方法?是不是每次都要计算三组啊?
让学生先充分地进行交流。
引导学生发现:因为较小的两边的和都大于最长的边了,那么用最长的边加一条较短的边,就一定大于另一条短边了。所以呢,这要把只要把较小的两条边加起来这一组进行判断,就可以代表三组了。还需要每组都判断吗?
设计意图:我以为,在全体学生都已经掌握的基础上,肯定会有少数学生发现判断能围成三角形的诀窍。教师的设计应当顾及到这样的学生。所以,在这里可以及时地引导全体学生都掌握简单方法。
三、深化认知,联系实际,拓展应用
1、轻松小游戏
教师:同学们的表现真是棒极了,老师为了表扬大家,给你做个小游戏,想不想啊?
出示:有人说自己步子大,一步能跨两米多,你相信吗?为什么?
请两个学生上来跨一步。
先让学生充分的交流。
教师:你能用我们今天学习的知识来解释一下吗?
课件演示:两腿和地面跨出的距离形成了一个三角形。
教师:可是有个人说,我可以。你们知道是谁吗?
出示姚明图片,身高:226厘米;腿长131厘米。
设计意图:通过游戏的形式解决问题,使学生主动地把本课的知识内容纳入到自己的认知结构,同时熏陶学生逐步达到会学数学的境界,并再次向学生渗透看问题要全面的原则。
2、判断:下面哪组的小棒能围成一个三角形?(单位:厘米)(有图)
(1)3、4、5 (2)3、3、3 (3)3、3、5 (4)2、6、2
设计意图:这道基础题的练习,既是对前面所学内容的巩固,同时引导学生利用简单方法快速地进行判断。
3、儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根三米长的木料,假如你是设计师,第三根木料会准备多长?并说明理由。
设计意图:从问题中来,到问题中去,让学生用学习的知识解决生活中的现实问题,并从美观和讲究实用的角度出发,从而也培养了学生的综合能力。
四、全课小结,从考虑问题要全面,引出第三边的取值范围
设计意图:对于小学四年级的学生而言,范围的建立的确是有一定困难的。再次呈现前面的研究表格,这些数据是具体的,教师提出:3.5厘米行吗?3.2呢?3.1呢?3.01呢?不断地向3逼近,学生自然会想到3.0001也是可以的,那该怎样表述呢?比3厘米长已呼之欲出;以此思考,学生不难得出又必须比9厘米短。这样层层递进的启发引导,发散拓宽了学生的思维,有机地渗透了无限逼近的数学思想,培养了学生抽象、概括的能力。
教学目标
1、 使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。
2、 使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。
教学过程
一、 创设情境,激趣引入
谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。
课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。
提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)
谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)
[评析:通过介绍哥德巴赫猜想的有关史料,很自然地把学生的注意力集中到素数的概念上,激发了学生进一步探索和发现的欲望。同时,学生能从中感受到数学的奇妙与魅力,产生对数学的兴趣。]
二、 设疑引探,自主建构
1. 操作感受。
谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。
学生在小组内活动,教师巡视并指导。
引导:仔细观察拼出的结果,你发现了什么?
通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。
提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)
[评析:数学教学不仅要注重数学知识和技能的传授,更要让学生经历知识的形成过程。实验环节的设计,能引导学生在操作活动中自主发现自然数因数个数的特点,初步感知素数和合数的概念。]
2. 分类建构。
谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。
学生活动,教师巡视。
反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)
提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)
提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)
再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)
谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。
学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。
提问:在2~20各数中,哪些数是素数?哪些数是合数?
[评析:让学生写出1~20各数的所有因数,并根据每个数因数的个数进行分类,为学生的自主探索留出了足够的时间和空间,提高了学生的参与度,突出了学生的主体地位。接着通过对三个问题的讨论,引导学生深入思考,发现素数和合数的特点。自学课本,既及时准确地揭示了素数和合数的概念,又为学生进一步清晰和修正已经形成的概念提供了机会。]
3. 交流质疑。
谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?
学生可能提出:素数有多少个?最小的素数是几?最小的合数是几?有最大的素数或合数吗?
根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。
三、 巩固练习,深化认识
1. 试一试。
出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。
先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。
2. 做想想做做第2题。
先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。
3. 做想想做做第3题。
学生独立完成判断,并说明理由。
四、 全课总结
提问:通过今天的学习,你知道了哪些知识?有什么新的收获?
五、 举例检验
谈话:我们已经认识了素数,再回过头看一看哥德巴赫猜想(出示哥德巴赫猜想),你认为这个猜想正确吗?你能举几个例子检验一下吗?
学生举例检验。
谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!
[评析:利用所学知识解释和检验哥德巴赫猜想,既巩固了本节课学习的内容,又进一步激发了学生的探索愿望。]
[总评]
在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。
在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。
教学目标
1.使学生知道常用的-----公顷、平方千米(平方公里),通过实际测量和观察,知道1公顷有多大.
2.使学生掌握间的进率和简单换算.
3.培养学生的参与意识,感受数学知识与生活实际有着密切的联系.
教学重点
知道1公顷有多大,掌握间的进率.
教学难点
土地单位间的换算.
教学过程
一、复习.
1.到目前为止,你都认识了哪些常用的面积单位?它们之间的进率是多少?
2.像这些平方米、平方分米、平方厘米等都是公制面积单位,是计量面积时使用的.在计算土地面积时要使用 (板书课题:)常用的单位有平方米、公顷和平方千米.【演示课件】
二、新授.
1.认识1公顷.
(1)将学生带到操场,画一个边长是10米的正方形.引导学生观察、计算正方形的面积.
(2)教师指出:100个这样的正方形土地的大小,叫做1公顷.为学生介绍学校操场、教学楼的占地面积.
(3)把学生带回教室,思考讨论:公顷和平方米之间的进率是多少?(1公顷=10000平方米)
2.教学例题.
(1)出示例题,学生试算.
一个长方形果园,长250米,宽120米.这个果园有多少公顷?
(2)汇报展示,全班订正.【继续演示课件】
250120=30000(平方米)
30000平方米=3公顷
答:这个果园有3公顷.
(3)测量土地时,一般用米作长度单位来测量.算出面积是多少平方米以后,再换算成公顷.
3.认识平方千米.
(1)我们都知道我们伟大的祖国有960万平方公里的土地.平方公里也就是平方千米,是比公顷还要大的.
(2)大家想一下,边长是1000米的正方形面积是多少?1000000平方米也就是1平方千米.想象一下1平方千米有多大?
(3)谁能计算一下平方千米和公顷之间的进率是多少?【继续演示课件】
三、巩固练习.
1.2公顷=平方米
50000平方米=公顷
2平方千米=公顷
4000公顷=平方千米
2.(1)北京的天安门广场是世界上最大的广场,面积约40公顷,约合平方米.
(2)北京的故宫是世界上最大的宫殿,占地面积是720000平方米,合公顷.
3.一块边长是400米的正方形麦地,有多少公顷?
四、全课小结.
通过这节课的学习你有了些什么新的收获?
五、课后作业 .
1.(1)北京的天安门广场是世界上最大的广场,面积约40公顷,约合平方米.
(2)北京的故宫是世界上最大的宫殿,占地面积是720000平方米,合公顷.
2.一个飞机场新建一条跑道,长2500米,宽80米.占地多少公顷?
3.一块正方形的果园,周长是2400米.这个果园有多少公顷?
4.农民给水稻施化肥.每公顷施225千克.在一片长200米,宽150米的长方形稻田里,应施化肥多少千克?
板书设计
例1.一个长方形果园,长250米,宽120米.这个果园有多少公顷?
250120=30000(平方米)
30000平方米=3公顷
答:这个果园有3公顷.
1公顷=10000平方米
1平方千米=1000000平方米=100公顷
【教学目标】
1、知识与技能
①、通过探索活动,使学生发现乘法结合律,并会用字母表示。
②、能熟练地运用乘法的结合律进行简便运算。
2、过程与方法
①、通过探索活动,使学生进一步体会探索的过程和方法。
②、运用乘法结合律巧算乘法的过程和方法。
3、情感态度与价值观
培养学生的探索能力、发现能力和运用能力。
【教学重点】
指导学生探索和发现乘法的结合律。
【教学难点】
发现规律,总结规律。
【教学过程】
一、谈话导入
(教师)经过同学们的探索,我们已经发现了一些数学规律。这节课我们继续去探索,看一看还能发现什么规律?
二、探索交流,发现规律
(教师)出示课件---探索与发现(二)。
(学生)计算(9×25)×4和9×(25×4)、(12×8)×125和12×(8×125)两组算式。
(教师)两组算式的结果都相等吗?
(师生活动)比较算式特点,通过比较使学生明白:
(9×25)×4=9×(25×4)、(12×8)×125=12×(8×125)
即:三个数相乘,可以先把前两个数相乘,再乘以第三个数;也可以先把后两个数相乘,再乘以第一个数,积不变。
(教师)这就叫做乘法结合律。
(学生反思)
(教师)如果用a、b、c表示三个数,你能写出表示乘法结合律的式子吗?
(学生)尝试书写关系式,并反馈尝试的结果。
(师生归纳)(a×b)×c=a×(b×c)。
三、应用规律,解决问题
(教师)出示课件---乘法结合律的运用。
(教师激疑)你能运用乘法结合律巧算下列各题吗?
1、37×5×2;2、17×25×4
(学生活动)
(教师)上面两题为什么要把5×2和25×4结合起来计算?
(学生)观察、讨论,然后反馈结果。
(师生归纳)因为分别把这两个数结合起来相乘,所得的乘积是整十、整百数,可以使计算更为简便;在今后的乘法计算中,我们要尽可能地运用。
(学生反思)
四、运用所学,巩固练习
学生齐练,教师巡视,发现问题及时纠正,其乐融融。
五、拓展运用
(教师)比较:25×24的两种算法哪种更简便?
(师生活动)
(教师)根据上例,你能用简便方法计算25×32×125吗?
(师生活动)
六、课堂小结
(学生反思)
七、课后作业
完成课本P46练一练第1、2题。
教学目标:
1、理解并掌握小数点位置移动引起小数大小的变化规律。
2、能运用小数点移动引起小数大小变化规律进行计算,解决简单的实际问题。
3、通过总结规律的过程,培养观察比较、概括的能力。
教学重点:
发现并掌握小数点移动引起小数大小的变化的规律。
教学难点:
理解小数点位置的移动为什么会引起小数大小的变化。
教学准备:
多媒体课件。
教学过程:
一、导入新授
1、复习旧知。
出示题目:比较大小:0.26和0.260 1.500和1.5 1.42和14.2 50.2和5.02。
学生完成后,引导学生进行总结。
在一个小数的末尾添上或去掉O,不改变数的大小,其原因在于没有移动小数点的位置。而后两题,因为小数点的位置发生了移动,所以数的大小也发生了改变。
2、导入新课。
小数点的位置移动了,小数的大小到底发生了怎样的变化?
今天我们就来研究小数点移动带来的小数的大小变化。
板书课题:小数点移动引起小数大小的变化。
二、探索发现
第一环节 探究规律
教学例1。
1、课件出示教材第43页情境图,让学生根据连环画的内容,讲一讲这个故事。
指名回答,老师板书:0.009m、0.09m、0.9m、9m。
引导学生思考:小数点移动与金箍棒的长短有什么关系?
2、小数点移动后引起小数怎样的变化?
把0.009m的小数点向右移动一位、两位、三位小数的大小有什么变化?
(1)0.009m等于多少毫米?(板书:0.009m= 9mm)
(2)移动0.009m的小数点。
向右移动一位,变为多少毫米?大小发生了怎样的变化?
(板书:0. 09m= 90mm,扩大到原来的10倍)
向右移动两位,原来变为多少?是多少毫米?大小有什么变化?
(板书:0. 9m= 900mm,扩大到原来的100倍)
教学内容:教科书第92页的例6及后面的做一做,练习二十二的第1-3题。
教学目的:使学生掌握小数的连乘、乘加、乘减的计算方法,培养学生的迁移和
类推能力。
教学重点:使学生掌握小数的连乘、乘加、乘减的计算方法。
教学难点:培养学生的迁移和类推能力。
教学过程:
一、复习铺垫
教师把教科书第92页的复习写在黑板上,让学生先想每题的运算顺序,再计算。
每题都让学生说一说含有什么运算,是什么式题,该怎样计算。可以有意识地让中、差生说,锻炼他们的语言表达能力。
二、学习新知
1、自学例6。
教师:我们已经学会了整数连乘、乘加、乘减式题的计算方法,小数的运算顺序跟整数一样。今天我们就学习小数的连乘、乘加、乘减式题的计算方法,看哪位同学能用以前学过的知识把新知识学得又快又好。
然后让学生独立算完。集体订正时,教师根据学生的回答,在黑板上板书计算的过程。再强调一遍运算的顺序。
2、基本练习。
做例6后面的做一做。
做题前,提醒学生要看清运算顺序再计算。学生独立计算,教师巡视,进行个别辅导。集体订正。
三、巩固练习
1、做练习二十二的第1题。
教师提醒学生先看清运算顺序再计算。教师巡视,了解学生掌握的情况,对学习有困难的学生进行个别辅导。还可以利用这段时间对小数乘法计算有困难的学生进行辅导。集体订正
对于有错误的学生要让他们说一说是怎样错的。
2、做练习二十二的第2题。
此题可以结合学生做题的情况,让学生分析计算中的错误,是怎么错了,应该怎样计算。
3、做练习二十二的第3题。
学生独立解答,教师巡视,集体订正。
注意让学生说一说题里的数量关系,以及列式和计算的方法。
四、小结(略)
板书设计:连乘乘加乘减
例6:光明小学的同学们在校园里种了300棵蓖麻,平均每棵收蓖麻籽0.18千克,每千克蓖麻子可榨油0.45千克,一共可榨油多少千克?
0.450.18300
=0.081300
=24.3(千克)
答:一共可榨油24.3千克。
一、课前自学,预习要求
1、看:课本第10页例4
2、想:60位游人要派几位保洁员?90人呢?
有多少有人要派5位保洁员?
你是怎么想的?根据什么?
3、做:尝试做第11页做一做
二、自学反馈
1、检查预习作业
2、提出不懂的问题
3、交流讨论
三、关键点拨
1、学习例4
出示例4,学生读题
问:60位游人要派几位保洁员?90人呢?
有多少有人要派5位保洁员?
你是怎么想的?根据什么?
鼓励学生用多种方法解答,并用综合算式解答
问:先求什么?再求什么?
交流思路时启发学生用第二种方法解答,并使学生明白为什么要先算括号例的,体会小括号的作用。
强调:加减法和乘除法在一起,要想先算加减法,必须打括号
学生上台板演。
总结有括号的混合运算的运算顺序。
2、检查“做一做”
本题贴近生活,学生会用两种方法解决,订正时学生说思路和方法,为什么要使用小括号。
四、巩固练习
1、练习二第1题:先口算,再竖着对比上下三题的异同点,从中体会运算顺序的重要性。
2、练习二第2题:同桌相互说运算顺序后独立练习,教师指出算式中有两个小括号的可以同时脱式。
3、练习二第3题:要求学生用综合算式解答,说出小括号里算式表示的实际意义,体会小括号的作用。
教学目标
1、使学生比较系统地、牢固地掌握有关整数、分数、小数、百分数的基础知识。
2、进一步弄清概念间的联系与区别。
教学重点
使学生比较系统地、牢固地掌握整数、小数、分数、百分数的基础知识。
教学难点
弄清概念间的联系和区别。
教学步骤
一、铺垫孕伏。
1、填空【演示课件“数的意义”】
0、1、79、 、0.25、0.6、100、 、 、 、85%、30、90%、7、8、2.35……
学生分类填数:
2、导入:上题同学们填得很正确,这就是我们在小学阶段学习的几种数:整数、分数、小数、百分数。这节课我们就把这几种数的意义和有关知识进行一下整理和复习。(板书课题:数的意义)
二、探究新知【继续演示课件“数的意义”】
(一)整数
1、小组讨论。
2、师生总结。
自然数:0、1、2、3、……
自然数是整数。
教师说明:在小学只学大于0和等于0的整数,进入初中就要学习小于0的整数。
想一想:自然数有什么特征?
总结:最小的自然数是0,没有最大的自然数,说明自然数的个数是无限的。
(二)分数。
1、引导学生思考:
①把单位“1”平均分成若干份,表示这样的一份或几份的数叫什么数?(分数)
表示其中一份的数是这个分数的什么?(分数单位)
②在整数范围内能计算2÷9吗?有了分数以后能计算吗?为什么?
2、填空练习。
①把单位“1”平均分成4份,表示这样的3份是 ;把3平均分成4份,每一份是 。
② 的分数单位是( ),它至少再添上( )个这样的单位就成了整数。
3、教师说明:两个数相除,它们的商可以用分数表示。
即:
4、教师提问:同学们想一想,分数可以分为哪几类?
教师板书:
谁能说出真、假分数的意义及有关知识?(举例说明)
①分子比分母小的分数叫做真分数。真分数小于1.
②分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于1或者等于1.
③分子是分母的倍数的假分数可以化成整数。
④分子不是分母倍数的假分数可以化成带分数。
⑤反之,整数和带分数也可以化成假分数。
教师板书:假分数
教师说明:假分数、带分数、整数可以相互转化。带分数是由整数和真分数合成的数,它是分子不是分母倍数的假分数的另一种形式。
(三)小数。
教师引导:从分数的意义联想一下,小数的意义又是什么呢?还学了哪些有关的知识呢?你能举例说明吗?
教师板书:
教师说明:整数和小数都是按十进制计数法写出的数,其中个、十、百……以及十分之一、百分之—……都是计数单位。各个计数单位所占的位置,叫做数位。数位是按一定的顺序排列的。
(四)百分数。
教师提问:你们还记得百分数的意义吗?
教师板书:百分数(百分率或百分比):用%表示。
三、全课小结。
这节课我们整理和复习了数的意义及有关知识,并形成了知识网络,对数概念间的联系与区别有了更清楚的认识。
四、随堂练习【继续演示课件“数的意义”】
1、填空。
(1)把根3米长的铁丝平均分成7段,每一段长是这根铁丝的 ,每段长米 。
(2)分数单位是 的最大真分数是 ,它至少再添上( )个这样的分数单位就成了假分数