作为一名无私奉献的老师,通常会被要求编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么什么样的教学设计才是好的呢?以下是人见人爱的小编分享的《圆的周长》说课稿(优秀10篇),您的肯定与分享是对小编最大的鼓励。
一、说教材
本节课选自北师大版小学数学第十一册第一单元中圆的周长第一课时。本节课的内容是在学生学习了直线图形知识和初步认识了圆的基础上进行教学的。教材力图通过一系列操作活动,让学生知道圆的周长的含义,理解圆周率的意义,推导圆周长的计算方法,并为以后学习圆的面积、圆柱、圆锥等知识打下基础。
二、教学目标:
(1)知识目标:使学生直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,掌握圆周率的近似值;理解和掌握求圆的周长的计算公式。
(2)能力目标:能用滚动法、绕绳法等测量圆的周长,研究周长与直径的关系,能正确运用周长的知识解决简单的实际问题。
(3)情感目标:在探究学习过程中体验数学学习的探究性和趣味性,体会数学与现实生活的密切联系。
三、教学重点、难点:
本节课学习的关键是让学生知道任何圆的周长总是直径的3倍,因此我把让学生理解圆的周长计算公式的推导过程及其实践运用设为本节课的重点,而理解圆周率的意义则为教学的难点。
四、说教法
《数学课程标准》指出:数学学习内容应当“有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动”、“动手实践、自主探索、合作交流是学生学习数学的重要方式”、“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”,那么,如何体现新课程所提倡的学习方式、教学方式呢?
我的思路是:采用“激趣——猜想——验证——推理——归纳”的探究式教学方法,力求充分发挥教师的引导作用,营造良好的探究式学习地方氛围。
五、说学法
设计“说一说”“猜一猜”“量一量”“练一练”的教学活动,让学生通过动口、动脑、动手的学习方式,更积极主动地参与数学学习中,感受“自主、合作、探究”学习的无限乐趣。
六、说教学过程:
(一)情境激趣,引发探究。
1、故事导入:兔子自从上次的比赛输后,很不服气,它又向乌龟发起了挑战,聪明的乌龟接受了挑战。它们从同一个起点A出发,同向而行,再回到起点位置(如图示)。兔子跑直道,沿着正方形跑道跑。而乌龟选择了弯道,沿着圆形的跑道跑。最后还是乌龟赢了。
2、揭示课题:引导学生观察兔子、乌龟所跑的。路线思考,兔子跑的路程实际求的是什么?乌龟跑的路程又是求什么?顺势导入课题:圆的周长
(二)主动合作,探索新知。
1、说一说认识圆的周长
教师拿出教具,启发学生观察。学生通过学具的观察和体验来领会圆的周长的含义。教师进而提问学生“你有什么办法测量圆的周长?”学生会想到利用尺子,但圆周长是曲线,如何化曲为直,步步引发学生思考,让学生说出用绕绳法或滚动法来测量。
2、猜一猜初识圆周率
回忆正方形周长的计算公式得知,正方形的周长与其边长有关,是边长的4倍,引发学生思考圆的周长与什么有关?有什么关系?
鼓励学生大胆进行猜想,学生会想到圆的周长可能与圆的大小、直径、半径等有关,估计也是存在一定的倍数关系,可能是3倍、4倍或5倍。
3、量一量,验证猜想
当学生对圆的周长有了初步的认识后,教师组织学生以4人小组为单位,每组课前准备好三个大小不同的圆。小组合作完成学习活动。
活动一:测量圆的周长
小组分工合作,用自己喜欢的方法(滚动法、绕绳法等)对不同的圆进行周长的测量。
活动二:探究圆周长与直径的关系,认识圆周率。
(1)从学生猜测的结果中选择一个(直径),让学生探究圆与直径的关系,验证猜想。
(2)分别测出各圆的直径,把数据记录填入表中
(3)汇报展示
学生汇报小组测量的结果,教师把测量不同圆的相关数据展示出来。
(4)观察,发现
让学生观察、比较表中的数据,发现了什么?引导学生初步发现:圆的周长总是直径的3倍多一些。
(5)总结、归纳
教师:实际上这个比值是一个固定值,数值是在3.1415926—3.1415926之间,这个发现早在一千多年前我国数学家祖冲之发现的,这个伟大的发现比欧洲早了500年。我们把它叫做圆周率,用字母π表示,π是一个无限不循环小数,计算时取其近似值3.14
活动三:推导圆周长计算公式。
(1)引导讨论:求圆的周长必须知道哪些条件?如果已知圆的直径或半径,该怎样求周长?
(2)推导出求圆周长公式C=πd C=2πr
(三)学以致用,解决问题。
1、和自己的伙伴一起解答例1和做一做。
2、说出这两题用哪个公式比较好?
(四)实践应用,拓展创新。
1、快速判断
(1)π=3.14。( )
(2)圆的周长总是直径的π倍。( )
(3)大圆的圆周率比小圆的圆周率大。( )
2、拓展创新
如果知道兔子所跑的正方形跑道的边长是6千米,你能求出乌龟跑一圈跑了多少千米吗?
(五)总结评价,体验成功
我是用谈话的方式进行小结的:
1、你学到了什么?(引导学生进行总结、梳理)
2、你是怎么学到的?(指出这些解决问题的方法可以用到今后的学习中)
七、说板书设计
圆的周长÷直径=圆周率
圆的周长=圆周率×直径C=πd
又因为d=2r C=2πr
教学目的:
1.让学生知道什么是圆的周长.
2.理解圆周率的意义.
3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.
教学重点:
推导圆的周长计算公式.
教学难点:
理解圆周率的意义.
教具学具:
1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.
2.电脑软件及演示教具.
教学过程:
一、复习:
上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?
二、导入:
这节课我们继续研究圆的周长(板书课题).
1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?
2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?
问:什么是圆的周长?
板书:围成圆的曲线的长是圆的周长.
3.你能测量出这个圆的周长吗?(能)
4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?
5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?
回答:不能.
想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.
三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?
四、学生动手测量、教师巡视指导.
五、统计测量结果.
观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?
六、电脑演示
(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.
七、看书后回答问题:
1.是谁把圆周率的值精确计算到6位小数?
2.什么叫圆周率?
3.知道了圆周率,还需知道什么条件就可以计算圆的周长?
4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?
现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)
八、出示例1:
一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?
(得数保留两位小数)
请同学们想一想:车轮滚动一周的距离实际指的是什么?
解:d=1.95 单位:米
c=πd
=3.14×1.95
=6.123
≈6.12(米)
答:车轮滚动一周约前进6.12米.
九、课堂练习:
1.投影:计算下面图形的周长.
2.判断下面各题(正确的出示“√”,错误的出示“×”)
(1)圆周率就是圆的周长除以它的直径所得的商.
(2)圆的直径越大,圆周率越大.
(3)圆的半径是3厘米,周长是9.42厘米.
3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)
如果速度相同,两人同时出发,谁先回到出发地点?为什么?
小明的路线长:20×3.14+20×3.14
=62.8+62.8
=125.6(米)
爷爷的路线长:3.14×(20+20)
=3.14×40
=125.6(米)
两条路线一样长,两人应同时回到出发点.
4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.
结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.
小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识。
教学过程
设计意图
课堂活动一:
创设情境,引起猜想:认识圆的周长
(一)激发兴趣
这天,我们还来学习有关圆的知识。老师要先给大家讲一个故事。(边讲述边课件演示)小黄狗和小灰狗比赛跑,两只小狗都从同一点出发,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰狗得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
师:小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
师:那小灰狗所跑的路程呢?(师根据学生的回答板书课题:圆的周长)
师:圆的周长又指的是什么意思?
生:圆一周的长度,叫做圆的周长。(师板书:围成圆的曲线的长)
师:请同学们闭上眼晴:“想像”,圆的周长展开后,会怎样?
生:一条线段。
师:请同学们拿出老师发给你的圆形橡筋,并剪断,看看成什么?
学生齐答:也是一条线段。
3.动手体会:每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
课堂活动二:
动手操作,引导探索
(一)讨论圆周长的测量方法
1、讨论方法:下面,老师要请各学习小组利用手中的测量工具,互相合作,动手测量圆的周长。测量完后,相互交流一下,有几种方法?(学生讨论,动手测量)
2、反馈:哪个小组派个代表来说说你们小组是怎样测量出圆的周长?
(学生说出三种方法:绳测法、滚动法、软皮尺测,老师进行演示)
3、小结各种测量方法:(板书)
转化
曲直
4.创设冲突,体会测量的局限性
在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是不是所有的圆都能用这种方法测量出它的周长的?同学们请看(老师甩动绳子系的小球,构成一个圆)小球的运动构成一个圆,又比如(老师演示摩天轮),你能用绳测、滚动的方法直接量出它的周长吗?
这说明用绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。研究圆的周长首先应思考圆周长跟什么有关系。
(二)讨论正方形周长与其边长的关系
要探讨圆的周长到底与什么关系?先探讨正方形周长与其边长的关系
(课件出示一个表格)
正方形
周长
边长
周长:边长
1、
1cm
2、
2cm
3、
3cm
我的发现:正方形的周长与它的边长的比值是()。即正方形的周长是它的边长的()倍。(多媒体显示)。
(三)探讨圆的周长与直径的关系
1、请同学们看屏幕,认真观察比较一下,想一想,圆的周长跟什么有关系?(多媒体教具演示:圆的周长与它的直径长短有关)
提问:你们是怎样看出圆的周长和直径有关系?
小结:圆的直径越长,它的周长就越长。这说明圆的周长和直径有关系。
2、学生测量出圆的周长,并计算周长和直径的比值
圆的周长跟直径有关系。有什么关系呢?圆的周长跟直径是否存在着倍数关系呢?下面我们来做个实验。小组分工合作,用你喜欢的方法测量出圆的周长和直径,并计算出周长和直径的比值,得数保留两位小数,填好报告单,第四栏可用计算器。
一、教学内容:
圆的周长计算方法与应用
二、教学目的:
1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作能力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
三、教学重点:
1.理解圆周率的意义。
2.推导出圆的周长的计算公式并能够正确计算。
四、教学难点:
理解圆周率的意义。
五、教学过程:
(一)创设情境,引入新课
1、用多媒体出示:龟兔赛跑路线图。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?
b.什么是圆的周长?请你摸一摸你手中圆的周长。
3、师:今天我们就来研究圆的周长。并出示课题。
(二)引导探究,学习新知
1.推导圆的周长公式
(1)学生讨论
a.正方形的周长跟什么有关系?有什么关系?
b.你认为圆的周长和什么有关系?
(2)猜测
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2~4倍,那到底是多少倍呢?你有什么好办法吗?
(3)动手操作
a.以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。
师:看哪一组配合好,速度快,较精确。开始!
b.汇报小结。
师:用实物投影展示整理的表格。
师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大约是直径的三倍多一些?
2.认识圆周率、介绍祖冲之
(1)我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。π≈3.14
(2)介绍祖冲之
3.归纳圆的周长公式
(1)怎样求周长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
师板书:C=πd
(2)圆的周长还可以怎样求?由于d=2r则:C=2πr。师板书:C=2πr
师问:圆的周长分别是直径与半径的几倍?
(三)巩固应用,强化新知
1.求下面各圆的周长。
1)d=2米2)d=1.5厘米
2.求下面各圆的周长。
1)r=6分米2)r=1.5厘米
3.判断题
(1)π=3.14 ( )
(2)计算圆的周长必须知道圆的直径( )
(3)只要知道圆的半径或直径,就可以求圆的周长。 ( )
4.选择题
(1)较大的圆的圆周率( )较小的圆的圆周率。
a大于b小于c等于
(2)半圆的周长( )圆周长。
a大于b小于c等于
5.课堂反馈
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
6.实践操作
请同学们,画一个周长是12.56厘米的圆,先以小组为单位讨论:画多大?如何画?再操作。
(四)课堂总结,梳理知识
师:通过这堂课的学习,你有什么收获?你还有什么问题吗?
反思:
“圆的周长”是周长概念的一次扩展。为了使学生对周长的概念有一个较为完整的认识,让学生在获取知识的同时学会思考、学会合作。为此设计了两个以学生自主活动为主的学习环节。
1.动手实践,探究圆周长的测量方法。
怎样测量圆的周长呢?首先让学生在教师提供的学习材料——圆片、细绳、直尺中开动脑筋自主地选择解决问题的材料,接着让学生亲自动手实践,探究解决问题的方法。
当学生通过“看——想——做——悟”等一系列活动,探究出解决问题的方法后,抑制不住兴奋的心情,在小组内自觉地展示交流。同时,教师需要引导学生在全班交流中形成共识。
学生在动手、动脑、动口,调动多种器官参与学习的过程中,不仅自己求出了问题的答案,体验了自主获取知识的快乐,而且在探究的过程中,加深了对圆的周长概念的理解,并为以后探究圆的周长公式打下基础。
2.探究圆周长与直径的关系,寻找圆周长的计算方法。
在这个活动中,让学生按合作学习的要求,以小组合作学习为主要形式来测量大小不等的圆的周长和直径的长度,并通过计算求出周长除以直径的数值,进行汇报、总结。
学生在经历了观察、思考、合作的学习过程,会发现无论大圆、小圆,其周长除以它的直径的商总是三倍多一些的特征后,教师及时引导学生实现知识的迁移。
在测量、计算、比较中,使学生理解了圆周率是周长除以直径的商,而且从知识的深度和广度上体验了周长与直径的关系。
教学目标:
1、使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、初步学会透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:推导并总结出圆周长的计算公式。
教学难点:深入理解圆周率的意义。
教学准备:电脑课件、测量结果记录、计算器、直尺、直径不同的圆片、实物投影等。
教学过程
一、情景导入:
师:老师这里有一张图片,同学们想看吗?
师:请看大屏幕,这是我们学校的直径是9米的圆形水池,为了同学们的安全,学校要在水池的周围安装上护栏,需要多长的护栏呢?你有办法知道吗?
师: 我们看这个水池的边沿是圆形,安装护栏的长度就是圆的周长。如果我们知道了圆的周长,这个问题是不是就解决了?
师:这节课我一起研究圆的周长。
板书课题:圆的周长
二、探究新知:
1、圆的周长含义
师:请看大屏幕,这是一个圆,谁能看着圆再说一说什么是圆的的周长。
师:围成圆的曲线的长叫做圆的的周长。
2、测量圆的周长 师:怎样才能知道圆的周长是多少呢?师: 请同学们拿出准备好的圆片,你能想办法测量出它的周长吗? 生测量活动,师巡视。
师:谁愿意说说你是怎么测量的?
师:还有不同测量的方法吗?
师多媒体演示。
我们可以在圆片上作个记号,然后把圆片沿着直尺滚动一周,这样就测量出圆片的周长大约是31.5cm。
我们还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,就得到了圆片的周长也大约是31.5cm。
师:现在同学们都会测量圆的周长了,我们再来看圆形水池,请看大屏幕。请你用刚才的测量方法测量出水池的周长。
生:用绳子量出水池的周长。
师:水池那么大,用绳子子测量太麻烦了,滚动就更不行了。
师:有没有比测量更科学、更简便的方法呢?
生:计算
3、探究圆的周长计算方法
①探究圆的周长与直径的倍数关系
师:如何计算圆的周长呢?
师:我们可以回想一下,计算长方形的周长需要什么条件,怎么计算?
师:计算正方形的周长需要什么条件,怎么计算?
师 :同学们看,计算长方形、正方形的周长都需要一定的条
件,计算圆的周长也一定需要(条件),那这个条件可能是什么呢?圆的周长与什么有关呢?请同学们大胆的猜测一下。
师:如果圆的周长与直径有关,又有什么关系呢?
师 我们再来看,长方形的周长与它的条件长和宽之间有什么关系。
师:正方形的周长与它的条件边长之间有什么关系。
你们看,长方形、正方形的周长都与它们的条件之间存在着倍数关系。我们可以猜测圆的周长与直径之间也存在着(倍数关系)。
这个倍数会是几呢?同学们来猜测一下,这个倍数大于几
生1:大于2;
生2:大于3;
生3:大于4;
师:能说说你是怎样想的?
师:你从图上来看,圆的周长与直径之间的倍数会大于几。
生:直径把圆平均分成了2份,半个圆的曲线的长比直径长,圆的周长与直径之间的倍数一定大于2。
师: 有理有据。我们再来看,圆的周长和直径之间的倍数会小于几呢?
生猜并说理由。
师:这个问题有点难,老师来作个辅助图形,请看大屏幕。
(师多媒体演示圆外切正方形)
师:你发现了什么?
生:正方形的边长与圆的直径相等,正方形的周长是直径的4倍,而圆的周长比正方形的周长小,所以圆的周长与直径之间的倍数小于4。
师:你真聪明。通过同学们的猜想、交流,我们知道圆的周长与直径之间存在着倍数关系,并且这个倍数在2和4之间,到底圆的周长是直径的几倍呢?同学们能不能想办法求出来呢?
生:计算。
师:好,就用同学们这个办法来求。先测量出几个直径不同的圆片的周长,再用圆的周长除以直径,来找出圆的周长与直径之间的倍数。
下面就以小组为单位,利用手中的学具来量一量,算一算,把计算的结果记录在表格内,计算的时候可以请计算器帮忙。 (小组活动,师巡视。)
师:一定注意要测量准确,减少误差。
(集体汇报交流)
师:哪个小组愿意把你们的计算结果给大家展示一下。
(生说并展示结果)
师:请同学们来观察这些圆的周长除以直径的商,有什么特点。
生:都比3大一点。
师:也就是说圆的周长总是直径的3倍多一些。实际上圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,(板书:圆周率)大家看用这个字母表示,(板书π)。
师:会读吗?(板书pài)
师:一起读,用手在桌子上写几遍。
师:会写了吗?
师:π就是圆的周长除以直径的商,它是一个固定的数,我们再看同学们计算的圆的周长除以直径的商为什么都不一样?
生:测量不准确。
师:很会分析问题,我们计算出的这些商都不一样,是因为测量有
误差造成的。
师:老师这里有关于圆周率的历史资料,同学们想看吗?
师:请看大屏幕。(解说:古今中外,有许多数学家研究圆周率。其中,我国著名的数学家和天文学家祖冲之约在1500年前,计算出π的值在3.1415926和3.1415927之间。成为世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。)
师:有关圆周率的历史资料还有很多,如果有兴趣,请同学们课下继续搜集,查阅好吗?
师:好了,通过同学们的猜想、测量、计算,我们知道了圆的周长总是直径的π倍。知道了直径,怎么计算圆的周长。
生:圆的周长等于圆周率乘直径。
师:如果用字母C表示,那么C=?
(板书C=πd)
师:如果知道了圆的半径,我们还可以怎样计算圆的周长?
(板书:C=2πd)
师:这两个公式都是圆的周长计算公式,利用它可以计算圆的周长。
由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:π≈3.14)
三、实践应用:
师:现在我们来解决几个问题好吗?
1、师:请看大屏幕,请你来算算在水池的周围安装护栏需要多长的护栏。生算,集体交流。师评价。
2、老师还有一题,请看大屏幕。(生读,试做,集体交流。)
3、判断题
4、思考题
四、小结。
一、教学内容:
《义务教育课程标准实验教科书数学》人教版六年级上册第62-64页《圆的周长》
课题
圆的周长
例题
教学 目标
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能解决简单的实际问题。
2、使学生通过操作、计算,发现规律,培养抽象、概括的能力和探索意识。
3、通过介绍圆周率的史料,使学生受到中国古代在数学方面的成就。
手记
我在设计圆的周长这节课时,对圆周长概念的教学做了淡化处理,新教材对概念和老教材比已经大大弱化了。目标是让学生知晓,不必死抠字眼。我的设计,力图在已有知识和新知识之间找到衔接点,故而在正方形内接圆这一点上,为探究直径和圆周长的关系做了新的尝试。之后的教学,希望在自主探索中培养学生的动手操作能力。先让学生独立思考,然后小组合作,大胆猜想圆的周长可能与什么有关,再引导学生通过实际计算几个大小不等的圆形物体的周长与直径的比值,使学生明确自己的猜想是否正确,再让学生在动手操作、测量、观察和讨论中经历探索圆的周长公式的全过程,充分发挥学生学习的主体性,激发学生学习数学的兴趣。
重难点
教学重点:圆周长公式的推导。
教学难点:圆周率的意义。
教学过程
资源
目标
学与教
一、开门见山,直奔主题
二、渗透“转化”,激发兴趣
三、合作探究,发现规律
四、运用新知,解决问题。
五、知识回首,概括总结
师生谈话,生活中的周长概念,教具。
教具、学具,学生已有的生活经验
学具、计算器、
实验报告单
习题
实物感知,触摸圆的周长,既激发学生的学习兴趣同时,也形象的让学生建立圆周长的概念。
让学生探索测量圆的周长的方法,渗透“化曲为直”的数学思想
测量的局限性引出寻找计算方法的必要性。
从猜想与观察中初步探寻周长与直径的关系。
通过操作,收集数据,计算比对后发现规律。
从周长与直径的比值引出圆周率的概念
从圆周率概念中演变出圆周长的计算公式
巩固运用、深化知识
学生对整节课所学知识进行梳理
(一)谈话引入,揭示课题。
上节课,我们一起学习了“圆的认识”,今天我们一起来研究圆的周长。(板书课题)
1、拿出一个圆片问:什么是圆的周长?请你指出老师手上圆的周长?再指出自己准备的圆形物体的周长。
2、提问:圆的周长和我们以前学过的长方形和正方形的周长有什么相同的地方?又有什么不同?
(出示长方形、正方形、圆的图,让学生进行比较)
3、用一句话概括一下什么是圆的周长。
4、归纳:围成圆的曲线的长叫做圆的周长。
(二)探索测量圆的周长的方法
(1)教师接着问:长方形和正方形的周长,我们能直接用尺子测量出来,但是圆的周长能直接测量出来吗?比如这样的一个圆(铁丝围成的圆形)
生:拉直了再量一量。
师:为什么要拉直呢?(引出化曲为直的思想)
师再出示圆片问,这个能拉直吗?可以怎样得到它的周长?
你有什么好的方法? (同桌讨论)
汇报:(学生演示)
a、可以把圆在直尺上滚动一周,测出周长。
b、还可以先用绳子绕圆一周,测出绳子的长度,就是圆的周长。
教师评价:同学们想出的方法很好。刚才的方法有一个共同的特点是什么?
生:是把弯曲的线段转化为直的线段来测量。
师:做校服量你的腰围是不是跟这个差不多呢?
师板书:绕线法、滚动法——化曲为直
(3)教师问:这样的方法有局限性吗?举几个例。
生:比如说在操场上画的大圆的周长、广场上的圆形喷泉的周长、溜球绕在手指上旋转一周,形成了圆,它的周长不便用上面的方法。
师:用图片展示嫦娥二号绕月飞行的圆形轨迹,引发学生的感慨:测量的方法有局限性,那么我们就要找出求圆的周长的普遍方法。
(1) 观察并猜想:圆的周长会和什么有关?有怎样的关系呢?
,圆的周长教学设计
(三个直径不同的圆提示周长与直径有密切的。联系。)
(2)观察并思考:正方形与圆有何共同之处,圆的周长会超过直径的4倍吗?至少应大于直径的( )倍。
(三)圆周长的推导。
(1)探索圆周长与直径的关系。
下面我们就来测一测,算一算,看看圆的周长和它的直径有什么关系?
让4人小组的同学进行合作,分别测量出3个圆形物体的周长和直径,并把结果记录在表格中。最后观察数据,有什么发现?
圆
直径(厘米或毫米)
周长(厘米或毫米)
周长/直径(保留两位小数)
圆1
圆2
圆3
我们的发现
(2)反馈。
请学生上台来展示,并且说说发现。
小结:同学们都发现了虽然我们测量的圆的大小不一样,但是圆的周长和直径的比值总是3倍多一点。
(3)教师用软尺绕学具圆一周,再将软尺沿直径绕三次演示3倍多一些,加深3倍多一些的印象。
3、教学圆周率。
师:其实任何一个圆的周长和直径的比值都是一个固定的数。我们把它叫做圆周率。(板书)用希腊字母π表示。
师:什么是圆周率呢?也就是说周长是直径的多少倍?
说到圆周率,老师不得不提起一位我们的祖先。(看63页你知道吗?)
上面的介绍,你有什么感受?
圆周率是一个无限不循环小数,在计算时,一般保留两位小数,π≈3.14。
4、圆周长的计算公式。
师:刚才,我们圆周率是怎样求出来的?(周长÷直径=圆周率)
师:根据圆周率你能求出圆的周长吗?
周长=直径×圆周率
(c=πd)
师:如果用半径求呢?
(c=2πr)
5、从最后的公式中可以看出,什么决定了圆的周长?
(四)解决问题
1、算一算。
求下面各圆的周长。
(1)d=4厘米 (2)r=1.5米
师:求圆的周长必须知道什么条件?
2、判断。
(1)、任何一个圆的周长总是直径的π倍。( )
(2)、圆周率是任何圆的周长和直径的比的比值。( )
(3)、大圆的圆周率比小圆的圆周率大。( )
(五)、谈学习收获:
师:哪位同学能谈谈这节课你的收获与感想?
板书 设计
圆的周长
圆的周长测量: 滚动法、绳测法---------------化曲为直
规律: 圆的周长总是它的直径的3倍多一些。
圆的周长÷直径=圆周率
公式:圆的周长=直径×圆周率
C=πd C=2πr
教学 准备
每小组学生准备:一条绳子、剪刀、一把直尺、3个大小不同的圆。
推导圆周长的计算公式,准确计算圆的周长。
【教学内容】
《义务教育课程标准试验教科书。 数学》(苏教版)六年制五年级下册第十单元第98-102页,例4,例5和例6及练一练和练习十八。圆的周长,周长计算公式。
【教材分析】
这部分内容是在学生认识圆的基本特征的基础上,引导学生探索并掌握圆的周长公式。首先引导学生从生活经验出发,借助观察、比较进行猜想,再具体描述圆的周长的含义,并让学生通过进一步的思考,认识到圆的周长与直径的关系。最后引导学生根据对测量圆周长活动过程的理解,推导出圆的周长公式。然后让学生应用刚刚掌握的公式计算圆的周长,解决简单的实际问题,巩固对公式的理解。
【教学目标】
1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。
2、培养学生的观察、比较、概括和动手操作的能力。
3、对学生进行爱国主义教育。
【教学重点】
圆的周长和圆周率的意义,圆周长公式的推导过程。
[教学难点]
圆周长公式的推导过程。
【教学准备】
多媒体课件、实物投影、圆、绳子、直尺、圆规等。
【教学过程】
一、情境创设,生成问题
1、出示一个正方形花坛和一个圆
问:这是什么图形?围着花坛跑一圈,哪个长哪个短呢?
预设一:看哪个跑得步子多。
预设二:计算它们的周长,进行比较更为简便。
2、什么是长方形的周长?怎样计算?这个长方形的周长与长和宽有什么关系?
预设一:C=(a+b)×2
预设二:C=2a+2b
3、什么是圆的周长?
让学生上前比划,圆的周长在那?那一部分是圆的周长?
得出定义:围成圆的曲线的长叫做圆的周长。
二、探索交流,解决问题
(一)圆周长的公式推导。
1、探索学习。
(1)你可以用什么办法知道一个圆的周长是多少?
(2)学生各抒己见,分别讨论说出自己的方法:
预设一:用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。
预设二:把圆放在直尺上滚动一周,直接量出圆的周长。
那么用一条线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?
用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。
设计意图:引导学生从生活经验出发,借助观察、比较进行猜想:到底怎样测圆的周长。进而激发学生进一步探究圆的周长是如何求出来的兴趣。
2、动手实践。
(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。
(2)引生看表,问你们看周长与直径的比值有什么关系?
预设:都是3倍多,不到4倍。
(3)你有办法验证圆的周长总是直径的3倍多一点吗?
(4)阅读课本P102,介绍圆周率,及介绍祖冲之。
∏=3.1415926535…… 是一个无限不循环小数。
3、得出计算公式。
圆的周长=圆周率×直径
C = ∏d或 C = 2∏r
设计意图:教材通过示意图对这两种方法做了清楚的说明,这有利于学生学会具体的测量圆周长的方法,又能使学生从中体验“化曲为直”的策略。
(二)、解决新问题。
1、解决情境题中的问题。
学生独立完成,小组内订正。
2、教学例1 : 圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车约转动多少周?
小组内想出解决的办法,并在全班交流。
预设一: 已知 d = 20米 求:C = ?
根据 C =πd 20×3.14=62.8(m)
预设二: 已知: 小自行车d = 50cm
先求小自行车C = ? c=πd
50cm=0.5m 0.5×3.14=1.57(m)
再求绕花坛一周车约转动多少周?
62.8 ÷1.57=40(周)
答:它的周长是62.8米。绕花坛一周车约转动40周。
设计意图:引导学生根据圆的周长公式列式解答。这样有利于学生提高综合应用数学知识和方法解决实际简单的实际问题,巩固对公式的理解的能力。
三、巩固应用,内化提高
1、求下列各题的周长。
书本102页练习十八的第1、2题
2、判断正误。
(1)圆的周长是直径的3.14倍。 ( )
(2)在同圆,圆的周长是半径的6.28倍。( )
(3)C =2πr =πd 。 ( )
(4)半圆的周长是圆周长的一半。 ( )
设计意图:通过这些小题的练习,让学生进一步加深对相关知识的理解。
四、回顾整理,反思提升
通过这节课的学习你都知道了什么?还有什么不懂的呢?
一、说教材
《圆的周长》选自湘教版版小学数学六年级上册“圆”的第三节。本课教学是以长方形、正方形周长知识为认知基础的,是对前面所学“圆的认识”的深化,也是后面学习圆的面积等知识的基础。本课起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。
根据课程标准和教材编写意图,确立本节教学目标如下:
1、知识目标:知道什么是圆的周长;理解圆周率的意义;理解掌握圆的周长的计算公式。
2、能力目标:会初步运用公式解决生活中一些简单的实际问题。
3、思想目标:通过祖冲之与圆周率故事的介绍,激发学生作为中华儿女的自豪感。
教学重点:探究并发现圆的周长与直径的关系。
教学难点:运用圆的周长知识解决一些简单的实际问题。
二、说教法、学法
根据教学内容和学生的认识规律,我首先采取课件演示的方法帮助学生认识圆的周长,渗透转化思想;然后利用实验法引导学生认识、理解圆周率,并推导出圆周长的计算公式,培养学生操作技能,提高学生分析、比较、推理、概括的能力;最后运用自学辅导法,引导学生自己去思考、测量、计算,最终发现圆的周长与它的直径和半径的关系,从而学生提高自学水平。在教学中,注重学生的独立思考及小组交流,交互运用各种学习形式,达到发展智力,培养能力的教学目标。
教学准备:
1、多媒体课件。
2、每个学生都准备三个大小不同的、直径为整数的圆片,一根线条,一把直尺。
三、说教学过程
(一)创设情境,激情导入
课件出示阿凡提的小黑驴与国王的`小花驴赛跑的故事。引导学生观察并思考:要求小花驴所走路程,实际是求圆的什么?让学生揭示课题:圆的周长。
(应用多媒体课件辅助教学,能有效地激发学生的学习兴趣,使学生产生强烈的学习欲望,从而形成良好的学习动机。)
(二)自主合作,探究新知
1、教具演示,直观感知,结合认知认识圆的周长。
(学生独立实验,用绕线法、滚动法量出圆的周长,教师指导操作要点,培养学生的动手实践能力。)
2、小组合作,完成实验。
a.量一量、记一记:学生测量圆的周长、圆的直径,然后记下数据,培养学生的实践操作能力。
b.比一比:比较数据,揭示关系。
学生继续实验并算出每个圆周长除以它的直径的商,把商记录下来。通过计算学生发现:这三个圆中,每个圆的周长,都是它的直径长度的3倍多一些。得出结论:所测量的其他圆的周长也是它的直径的3倍多一些。
(在实验操作过程中培养学生动手操作的技能、技巧,提高学生分析、比较、推理、概括的能力。)
3、介绍圆周率。
①先介绍表示这个3倍多一些的数,是一个固定不变的数,我们称它为圆周率。用式子表示:圆的周长÷直径=圆周率(π)
②介绍π的读写方法。
③最后结合画像介绍古代数学家祖冲之与圆周率的故事,激发学生作为中华儿女的自豪感。同时指出:圆周率是一个无限小数,小学阶段取它的近似值为3.14。
④学生总结归纳出圆的周长计算公式:
圆的周长=圆的直径×圆周率,用字母表示为C=π×d。
课件显示直径50米的圆形跑道和它的外接正方形跑道示意图。请学生观察思考圆的直径和正方形的边长是多少,然后利用公式快速算一算,这两个跑道的周长是多少?看看国王和阿凡提的比赛到底是不是公平。
4、课件出示:已知圆形草地的半径25米,计算圆形草地的周长。引发学生思考,得出用半径求周长的公式:C=2πR。
(应用多媒体课件教学能使课堂信息量加大,使学生易于接受所学知识,并主动参与教学,在愉快的气氛、交互讨论中掌握了教学的重点、难点,教学效果非常好。)
5、实践应用。
阿凡提看到自家的圆形驴栏有点松动了,就决定用些粗铁丝把驴栅栏围上3圈加固一下。阿凡提想请你们帮忙,计算这个半径是4米的栅栏需用多长的铁丝?
学生快速计算并交流:先求出圆的周长,也就是围一周需多少铁丝,然后再乘以3,就求出围3圈共需用多少铁丝。
(通过栅栏围铁丝的实例体现进行圆周长计算公式的实践应用价值。)
(三)强化训练,形成能力
课件出示必做题、选做题、拓展题。
必做题(找学困生汇报):
1、选择填空
a.车轮滚动一周,前进的距离是求车轮的()
A.半径B.直径C.周长
b.圆的周长是直径的()倍。
A. 3.14B.π C.3
c.大圆的周长除以直径的商( )小圆的周长除以直径的商。
A.大于B.小于 C.等于
2、求下面各圆的周长
d=8dm;r=5cm;d=6m; r=3dm。
选做题(找中等生汇报):
(1)汽车车轮的半径为0.3米,它滚动1圈前进多少米?滚动1000圈前进多少米?
(2)花坛的周长是62.8米,你能求出这个圆形花坛的直径吗?
拓展题(找优等生汇报):
从一张边长为6厘米的正方形纸上剪下一个最大的圆,这个圆的周长是多少厘米?
(课件出示必做题、选做题、拓展题,针对性强,效果好:必做题有利于学困生消化所学知识,使之学有所得;选做题有利于学困生和中等生的提高:拓展题有利于优等生思维的拓展,使每个学生都能得到发展和提高。)
(四)总结提高,指导实践
学生汇报本节课的收获。(引导学生回顾、总结本节所学知识、学习方法及获得的情感体验。)
四、点评
这节课,教师通过数学教学与多媒体课件的有效整合,使课堂信息量加大,教学过程图文并茂、生动活泼。在教学中,教师起组织、引导作用,根据学生实际情况进行有针对性的指导,并充分发挥学生的主体作用,提高了教学效率。