在教学工作者开展教学活动前,时常会需要准备好教案,教案是保证教学取得成功、提高教学质量的基本条件。那么应当如何写教案呢?
一、学情及学习内容分析
“有理数的加法与减法”是基于规则为主的新授课型。
有理数的加法与减法是在引入“负数”的基础上,将数的范围扩展到“有理数”范围内的加、减法运算。本节课从学生的生活经历和经验出发,创设情境,通过分析生活情境中的事理和观察温度计刻度的操作,得到了一些有理数减法的算式,用“化归”的思想方法归纳出有理数减法法则,并应用所学的有理数减法解决实际问题,整节课的设计流程和总体思路可以用下图表示:生活情境,动手操作——有理数减法算式———有理数减法法则———有理数减法的应用。
二、教学目标及教学重(难)点
教学目标:
1、知识与技能:会根据减法的法则进行有理数减法的运算。
2、过程与方法:经历分析生活情境中的数学事例,提炼其中的数学算式,并从中归纳有理数减法法则;经历将法则应用于解题的这一由一般到特殊的过程。
3、情感态度与价值观:在由实际情境提炼数学算式的过程中,感受数学在我们的生活中;在这一过程中,渗透转化的思想方法,感受数学思想方法的导航作用。
教学重点:有理数减法法则与运用
教学难点:从实际情境到数学算式,从数学算式到法则的提炼,在法则的总结中体现化的思想方法的渗透。
教学方法:观察探究、合作交流。
三、教学过程设计:
在课前让学生玩有理数加法中的扑克牌游戏。
1、情境引入:
师:同学们,大家都看过天气预报,有没有注意到里面有“温差”之说呢?
有效性分析:通过设计“温差”这一问题情境,进而顺利的进入课题,并从列算式角度加以认识,得到一些有理数减法算式,为后面的化归思想方法归纳出有理数减法法则做好素材和算式上的准备。
2、建构活动
活动1:计算温差
师:有理数加减
生1:利用温度计的刻度直观得到算式5 + 3 = 8
生2:利用日温差的定义可得到算式:5-(-3)= 8
师:比较两式,我们有什么发现吗?
生:“-”变“+”,(-3)变3。
活动2:通过举例子验证刚才的变化过程,加深对有理数减法算式的理解。
有效性分析:从生活情境中,学生获取了丰富的素材和有理数减法运算的算式,为下面观察算式特点,总结运算方法做好准备。这种由算式到法则的过程,使学生从心理上更易接受,令算式更有实际背景和说服力,为有理数减法运算法则的提炼和数学化打下了良好的基础。
3、数学化认识
5-(-3)=5 + 3(-3)-(-5)=(-3)+ 5
3-(-5)=3 +5(-3)-5=(-3)+(-5)
师:综合上面算式的共同特点即被减数不变,减号变加号,减数变成它的相反数,我们就得到了有理数减法法则:减去一个数,等于加上这个数的相反数。
有效性分析:“化归”的思想和方法是初中数学中最重要的方法之一,本节课的数学化过程正是通过观察已有的算式来发现和总结“有理数的减法法则”的,在教学中渗透了“化归”思想。此外,在化归为加法运算时,进一步复习加法法则,强化了有理数的减法与小学学的减法之间的联系和区别:即小学的减法是有理数减法中的一种特例,即减数比被减数小,;当减数比被减数大时,小学无法解决的问题现在可以解决了。
4、基础性训练
例1计算下列各题
①0-(-22)
②8.5-(-1.5)
③(+4)-16
④(?1
2)?1
4
⑤15-(-7)
⑥(+2)-(+8)
基础练:
1、课本p 322、3、4
2、求出数轴上两点之间的距离:
(1)表示数10的点与表示数4的点;
(2)表示数2的点与表示数-4的'点;
(3)表示数-1的点与表示数-6的点。
有效性分析:基础性训练中安排了典型例题,着重训练学生利用刚学过的“有理数的减法法则”进行计算的正确性和熟练度,并规范了计算题目的格式,在格式中进一步熟悉法则,正确运用法则,让学生明确有理数的减法的一般步骤是(1)变符号;(2)用加法法则进行计算
3、拓展延伸
巧用扑克牌进行有理数简单运算练习
有效性分析:通过扑克牌的两个活动,进一步调动学生学习有理数减法运算法则的积极性和主动性,寓教于乐,在活动中通过小组带动班上所有学生学习的热情,同时在活动中更加明确运算法则,做到熟练而准确地运用法则,感受并思考:“两个有理数相减,差一定比两个减数小吗?”的问题,以区别于学生在小学中熟知的减法运算,更好的完成本节课的教学目标。
四、教学反思
“有理数的加法与减法”的教学,可以有多种不同的设计方案,但大体上可以分为两类:一类是由老师较快的给出法则,用较多的时间组织学生练习,以求熟练的掌握法则;另一类是适当的加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应的适当压缩法则的练,如本教学设计。本节课注重学生自我学习的能力,学生在学习了有理数加法后,再学习有理数的减法,教师把学习的主动权归还学生,不再是教师讲,学生听,现在变为学生讲,教师听,由学生自己发现问题,分析问题,解决问题。学生与教师分享彼此的思考,经验和知识,交流彼此的情感,体验与感悟,丰富教学内容,求的新的发展,从而达到共识,共享,共进。
教学建议
知识结构
重点、难点分析
重点是多项式除以单项式的法则及其应用。多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,结果仍是多项式,其项数与原多项式的项数相同。因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。
难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。
教法建议
(1)多项式除以单项式运算的实质是把多项式除以单项式的运算转化为单项式的除法运算,因此建议在学习本课知识之前对单项式的除法运算进行复习巩固。
(2)多项式除以单项式所得商的项数与这个多项式的项数相同,不要漏项。
(3)要熟练地进行多项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行多项式除以单项式的运算。
(4)符号仍是运算中的重要问题,用多项式的`每一项除以单项式时,要注意每一项的符号和单项式的符号。
教学设计示例
教学目标:
1.理解和掌握多项式除以单项式的运算法则。
2.运用多项式除以单项式的法则,熟练、准确地进行计算.
3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.
4.培养学生耐心细致、严谨的数学思维品质.
重点、难点:
1.多项式除以单项式的法则及其应用.
2.理解法则导出的根据。
课时安排:
一课时.
教具学具:
投影仪、胶片.
教学过程:
1.复习导入
(l)用式子表示乘法分配律.
(2)单项式除以单项式法则是什么?
(3)计算:
①
②
③
(4)填空:
规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2.讲授新课
例1计算:
解:(1)原式
(2)原式
注意:(l)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(l)中容易丢掉最后一项.
(2)要求学生说出式子每步变形的依据.
(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.
例2化简:
解:原式
说明:注意弄清题中运算顺序,正确运用有关法则、公式。
(1)P150 1,2,。
(2)错例辩析:
有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为。
3.小结
1.多项式除以单项式的法则是什么?
2.运用该法则应注意什么?
正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。
4.作业
P152 A组1,2。
B组1,2。
教学目标
1. 会把有理数的加减法混合运算统
教学重点
把有理数的加减法混合运算统
教学难点
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变。
教学过程
根据有理数的`减法法则,有理数的加减速混合运算可以统
1.完成下列计算:
(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).
归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算;
(2)式统一成加法是________________________________;
省略负数前面的加号和( )后的形式是______________________;
读作____________________ 或 _______________________.
展示交流
1.把下列运算统一成加法运算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3) 2+5-8=_________________________________;
(4) 14-(-12)+(-25)-17=_____________________________________.
2. 将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
(2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)= ____________________________.
3.将下列运算先统一成加法,再省略加号:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________.
4. 仿照本P37例6,完成下列计算:
(1) -4-5+6 ; (2) -23+41-24+12-46.
5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了 km,此时他在住地的什么方向?与驻地的距离是多少?
盘点收获
个案补充
课堂反馈
1.计算:
2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?
迁移创新
一架飞机做特技表演,它起飞后的高度变化情况为:上升千米,下降千米,上升千米,下降千米,求此时飞机比起飞点高了多少千米?
课堂作业
本P39 习题2 .5第6题(1)、 (3)、(5), 第7题 .
本次说课我共分成教材分析、教学方法与手段、教学过程分析和几点思考四部分,具体内容如下:
一、教材分析:
(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节, “有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下
1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。而确定重难点是根据新课标的要求,结合学生的学情而确定的。
二、教学方法和手段:
根据本节课的内容特点及学生的学情,我选择的教学方法是引导探索、小组合作、效果反馈的教学方法。为了提高课堂的教学容量,增加实际问题的直观性,我选用多媒体辅助教学手段。
关于学法:本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,我想这样更能有效的培养学生学习数学的能力,更好的培养学生数学地思考问题。
三、教学过程分析:
本课共6课时,重点是有理数乘除法法则的教学,下面我重点说有理数乘法法则的教学。整体的教学程序包括:情景创设、提出问题;引导探索、归纳结论;知识运用、加深理解;变式练习、形成能力;回顾与反思、纳入知识系统;布置作业;板书设计七部分。
四、几点思考:
1、关于评价:本节课我采用了教师评价、师生评价、生生评价的多种评价方式,同时在教学过程中我多表扬学生的表现,并采用鼓励性的语言激励学生思考回答。这样有利于提高学生学习的积极性,帮助学生树立信心。
2、关于课本的处理:本节课中我直接利用课本的实例来引入,主要是这样的例子比较接近学生的实际生活,同时用图片展示,可以使学生更好的理解,从而更好的突出本节课的重点。基于初一学生学习的特�
1.重点:有理数减法法则和运算.
2.难点:有理数减法法则的推导.
(一) 重点、难点分析
本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.
(二)知识结构
(三)教法建议
1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.
3、 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.
4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。
1、教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.
2.学生学法:探索新知→归纳结论→练习巩固.
随堂练习答案.
1.(1)6; (2)-13; (3)6; (4)-15;
(5)-7; (6)-2; (7)6; (8)-4;
(9)+; (10)8848-(-155).
2.× × √ × √
作业 答案
(一)必做题:2.(2)102;(4)-68;(6)-210;(8)92
3.(2)-0.6;(4)0.2;(6)-1.5;(8)9.11
4.(2);(4);(6);(8)
(二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-2.28;(6)
8.(1)4;(2)5;(3)7;(4)5
教学目标
1.理解掌握法则,会将运算转化为加法运算;
2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力。
3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
教学建议
(一) 重点、难点分析
本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。
(二)知识结构
(三)教法建议
1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2.不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。
3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。
4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解掌握法则。
2.会进行运算。
(二)能力训练点
1.通过把减法运算转化为加法运算,向学生渗透转化思想。
2.通过有理数减法法则的推导,发展学生的逻辑思维能力。
3.通过运算,培养学生的运算能力。
(三)德育渗透点
通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
(四)美育渗透点
在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。
二、学法引导
1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。
2.学生学法:探索新知→归纳结论→练习巩固。
三、重点、难点、疑点及解决办法
1.重点:有理数减法法则和运算。
2.难点:有理数减法法则的推导。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片。
六、师生互动活动设计
教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。
七、教学步骤
(一)创设情境,引入新课
1.计算(口答)(1); (2)-3+(-7);
(3)-10+(+3); (4)+10+(-3).
2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的气温是10℃,夜晚的最低气温是-5℃.这一天的气温比最低气温高多少?
教师引导学生观察:
生:10℃比-5℃高15℃.
师:能不能列出算式计算呢?
生:10-(-5).
师:如何计算呢?
教师总结:这就是我们今天要学的内容。(引入新课,板书课题)
【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—.
(二)探索新知,讲授新课
1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?
生:(+10)-(+3)=+7.
师:计算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7.
师:让学生观察两式结果,由此得到
(+10)-(+3)=+10)+(-3). (1)
师:通过上述题,同学们观察减法是否可以转化为加法计算呢?
生:可以。
师:是如何转化的呢?
生:减去一个正数(+3),等于加上它的相反数(-3).
【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。
2.再看一题,计算(-10)-(-3).
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.
教师给另外一个问题:计算(-10)+(+3).
生:(-10)+(+3)=-7.
教师引导、学生观察上述两题结果,由此得到:
(-10)-(-3)=(-10)+(+3). (2)
教师进一步引导学生观察(2)式;你能得到什么结论呢?
生:减去一个负数(-3)等于加上它的相反数(+3).
教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。
【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标。
师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?
学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充。
师:出示有理数减法法则:减去一个数,等于加上这个数的相反数。(板书)
教师强调法则:(1)减法转化为加法,减数要变成相反数。(2)法则适用于任何两有理数相减。(3)用字母表示一般形式为:.
【教法说明】结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的实际意义。从而使学生体会到数学来源于实际,又服务于实际。
4.例题讲解:
[出示投影1 (例题1、2)]
例1 计算(1)(-3)-(-5); (2)0-7;
例2 计算(1)7.2-(-4.8); (2)-.
例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算。
例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评。
【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯。例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视。例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数。
师:组织学生自己编题,学生回答。
【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识。这样做,一方面可以活跃学生的思维,培养学生的表达能力。另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识。同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授。
(三)尝试反馈,巩固练习
师:下面大家一起看一组题。
[出示投影2 (计算题1、2)]
1.计算(口答)
(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);
(4)(-4)-9 (5)0-(-5); (6)0-5.
2.计算
(1)(-2.5)-5.9; (2)1.9-(-0.6);
(3)-; (4)-.
学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上。
【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备。
用实物投影显示课本第45页的画面。
3.世界峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?
生答:8848-(-392)=8848+392=9240.
所以两地高度相差9240米。
【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际。
(四)课堂小结
提问:通过本节课学习你学到了什么?生答:略。
师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算。对于小学不能解决的2-5这类不够减的问题就不成问题了。也就是说,在有理数范围内,减法总可能实施。
八、随堂练习
1.填空题
(1)3-(-3)=____________; (2)(-11)-2=______________;
(3)0-(-6)=____________; (4)(-7)-(+8)=____________;
(5)-12-(-5)=____________; (6)3比5大____________;
(7)-8比-2小___________; (8)-4-( )=10;
(9)如果,,则的符号是___________;
(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.
2.判断题
(1)两数相减,差一定小于被减数。( )
(2)(-2)-(+3)=2+(-3).( )
(3)零减去一个数等于这个数的相反数。( )
(4)方程在有理数范围内无解。( )
(5)若,,,.( )
九、布置作业
(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题。
(二)选做题:课本第84页中5、8.
十、板书设计
随堂练习答案。
1.(1)6; (2)-13; (3)6; (4)-15;
(5)-7; (6)-2; (7)6; (8)-4;
(9)+; (10)8848-(-155).
2.× × √ × √
作业 答案
(一)必做题:2.(2)102;(4)-68;(6)-210;(8)92
3.(2)-0.6;(4)0.2;(6)-1.5;(8)9.11
4.(2);(4);(6);(8)
(二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-2.28;(6)
8.(1)4;(2)5;(3)7;(4)5
教学目标
知识与技能:
熟记有理数的减法法则,能熟练进行有理数减法运算。
过程与方法:
1.借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;
2.经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。
情感态度价值观:
4.通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。
教学重、难点
重点:有理数减法法则和运算
难点及突破:有理数减法法则的推导
教学用具
多媒体
教学过程设计
一、导入
我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?
生:减法
师:今天我们一起来学习有理数的减法!
二、一起研究
下表是中央气象台发布的2003年1月28日天气预报中部分城市的和最低气温统计表
城市/°C最低气温/°C
昆明92
杭州6-2
北京-2-12
温差怎么表示?(温差=-最低气温)
1.那么怎么表示这一天的温差呢?学生填表回答
城市表示温差的算式观察到的温差/°C
昆明9-27
杭州
北京
结论:昆明的`温差可表示成9-2=7°C
杭州的温差可表示成6-(-2)=8°C
北京的温差可表示成-2-(-12)=10°C
2.现在我们来看这样一组算式,填空:
9+________=7; 6+______=8; -2+_______=10.
3.比较:9-2=7 9+(-2)=7
6-(-2)=8 6+2=8
-2-(-12)=10 -2+(+12)=10
思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。
怎样把加法转化为减法运算?
法则:减去一个数,等于加上这个数的相反数。
4.对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?
例1(略)
注意:减法转化为加法时,减数一定要改变符号
例2 (略)
三、练习:
P28 1、2
四、小结
1.理解有理数减法运算的法则。
2.熟悉有理数减法运算的两个步骤
3.有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。
五、板书设计
1.6 有理数减法
1.减法法则:减去一个数,等于加上这个数的相反数
a-b=a+(-b)
2.例
一、 教学目标:
知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
过程与方法:通过把减法运算转化为加法运算,向学生渗 透转化思想,通过有理数的 减法运算,培养学生的运算能力。
情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
二、教学重点:
运用有理数的减法法则,熟练进行减法运算。
三、教学难点:
理解有理数减法法则。
四、教 材分析:
本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一 册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
五、教学方法:
师生互动法
六、教具:
幻灯片
七、课时:
1课时
八、教学过程:
1、计算(口答):
(1) 1+(-2)
(2) -10+(+3)
(3) +10+(-3)
2、出示幻灯片二:
教师引导观察
教师总结:这就是我们今天要学习的内容(引入新课,板书课题)
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?
(+10)-(+3)=7
再计算:(+10)+(-3),师让学生观察两式结果,由此得到:
(+10)-(+3)=(+10)+(-3)
观察减法是否可以转化为加法 计算呢?是如何转化的呢?
(教师发挥主导作用,注意学生的参与意识)
2、再看一题:
计算:(-10)-(-3)
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与-3相加会得到-10,那么这个数是多少?
问题:计算:(-10)+(+3)
教师引导,学生观察上述两题结果,由此得到
(-10)-(-3)=(-10)+(+3)
教师进一步引导学生观察式子,你能得到什么结论呢?
教师总结:由以上两式可以看出减法运算可以转化成加法运算。
教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?
教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。
强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)
3 、例题讲解:
出示幻灯片三(例1和例2)
例1计算:
(1)6-(-8)
(2)(-2)-3
(3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教师板书做示范,强调解题的规范性, 然后师生共同总结解题步骤,(1)转化(2)进行加法运算。
例2:小明家蔬菜大棚的气温是24℃,此时棚外的气温是-13℃,棚内气温比棚外气温高多少摄氏度?
师巡视指导,最后师生讲评两个学生的解题过程。
课后练习1、2
教师巡视指导
师组织学生自己编题
1、 谈谈本节课你有哪些收获和体会?[
2、本节课涉及的数学思想和数学方法是什么
点评:有 理数减法法则是一个转化法则,要求同学们掌握并能应用进 行计算。
课堂检测(包括基础题和能力提高题)
1、-9-(-11)
2、3-15
3、-37-12
4、水银的凝固点是-38.87℃,酒精的凝固点是-117.3℃。水银的凝固点比酒精的凝固点高多少摄氏度?
学生思考后抢答,尽量照顾不同层次的'学生参与的积极性。
学生观察思考如何计算
学生观察思考
互相讨论
学生口述解题过程
由两个学生板演,其他学生在练习本上做
第1小题学生抢答
第2小题找两个 学生板演。
学生回答
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用
既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础
创设问题情境,激发学生的认知兴趣。
让学生通过尝试,自己认识减法可以转化为加法计算。
学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力
可以培养学生严谨的学风和良好 的学习习惯,同时锻炼学生的表达能力
可以照顾不层次的学生,调动学生学习积极性。
通过练习让学生进一步巩固新知,体验知识的应用性。
能增强学生学习的主动性和参与意识。
学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
锻炼学生综合运用知识,独立解题的能力
板书设计:
2.6有 理数的减法
有理数减法法则:
(+10)-(+3)=(+10)+(-3)
( -10)-(-3)=(-10)+(+3)
减去一个数等于加上这个数的相反数。 例1:
例2:
练习:
教学反思:
本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有 一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。
一、学习目标:
理解掌握有理数的减法法则会将有理数的减法运算转化为加法运算通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。
二、学习重点:
运用有理数的减法法则,熟练进行减法运算。
三、学习难点:
减法运算转化为加法运算
1、课前预习导学
(1)、有理数的减法法则:减去一个数,等于加上这个数的 .
(2)、课堂学习研讨2、-3的相反数是 ;在-5, 中,相反数最小的数是 。
2、计算:
(1)-4+1= ;
(2)(+8)+(-3)=
(3)(-3.4)+(-5.6)= 。
3、我市某天的最最高气温是4℃,最低气温是—3℃,请问这一天的温差是多少度?你能根据题意列出算式吗?
4、0比—4多多少?—2比—6多多少?1比—5多多少?—3比2多多少?
(1)列出算式,并借助数轴写出算式的答案;
(2)计算:0+(+4)= —2+(+6)= 1+5= —3+(—2)=
观察(2)的四个算式和(1)的`四个算式,你发现了什么规律?把你的发现与你的小组成员交流一下。在小组内再举出几个例子,验证一下你发现的规律是否正确。
如:9—8 = ,9+(—8)= —4—5= ,—4+(—5)=
5、计算下列各题
(1)8-(-5)
(2)(-2)-3
(3)(-6)-0
解:原式= 8+ 解:原式= -2+ 解:原式= + 0= = =
(4) 0-6
(5)(-2)-(-7)
(6)4-(+7)
解:原式= 0 + 解:原式= -2 + 解:原式= 4 += = =
6、课内训练
(1)(-3)-____=1
(2)__-7=-2
(3) -5-__=0
7、下列运算中正确的是( )
A、 B、
C、 D、
8、国际空间站测得站外温度的变化范围是-157℃~121℃,站外的最大温差是多少?
在运算过程中,要同时改变的两个符号,一个是运算符号由“-”变为“+”,一个是减数性质符号,由“正”变为“负”或由“负”变为“正”。同时,我们要注意,被减数的符号是不发生改变的。