小数近似数教学设计(最新10篇)

数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

数轴教学设计 1

一、教学目标

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法.

二、教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

难点:正确理解有理数与数轴上点的对应关系.

三、课堂教学过程设计

(一)创设情境,引入新课

师:大家知识温度计的用途是什么?

生:温度计可以测量温度

(出示投影1)

三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的。液面在0下5个刻度,一个温度计的液面在0刻度.

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃.

我们能否用类似温度计的图形表示有理数呢?

这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

(二)探索新知,讲授新课

1.数轴的画法

与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

第一步:画直线定原点原点表示0(相当于温度计上的0℃).

第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).

(出示投影1)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右0.5个单位长度的a点表示什么数?原点向左个单位长度的b点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.

学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.

教师根据学生回答给予肯定或否定,纠正后板书.

2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.

向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.

学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.

3.尝试反馈,巩固练习

请大家回答下列问题:

(出示投影2)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

学生活动:学生思考,不准讨论,想好后举手回答.

其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.

4.有理数与数轴上点的关系

通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.

例1画一条数轴,并画出表示下列各数的点:

1,5,0,-2.5,.

学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.

例2指出数轴上a、b、c、d、e各点分别表示什么数?

先让学生思考一会,然后学生举手回答解:a表示-3;b表示;c表示3;d表示;e表.

小数近似数教学设计 2

教学目标

(一)使学生能根据要求用四舍五入法求一个小数的近似数。

(二)使学生学会把较大的整数改写成以“万”或“亿”作单位的小数。

教学重点和难点

求一个小数的近似数及把较大数改写成以“万”或“亿”作单位的小数是教学重点。

把较大数改写成以“万”或“亿‘作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。

学习新课

(一)复习准备

我们已经学过求一个整数的近似数,请大家回忆一下:23956省略万后面的尾数约是多少?省略千后面的尾数约是多少?

启发学生说出:省略万后面的尾数,看千位上的数是3,根据”四舍五入“法要舍去,得出23956≈2万;省略千位后面的尾数,要看百位上的数是9,应该入上去,23956≈24千。

师:求一个整数的近似数用的是”四舍五入“法。在实际应用小数的时候,往往没必要说出它的准确数,只要说出它的近似数就够了。例如,量得大新身高是1.625米,平常不需要说得那么准确,只说大约1.6米或1.63米。

求一个小数的近似数与求整数的近似数相似,我们今天来研究怎样求一个小数的近似数。

板书课题:求一个小数的近似数。

(二)学习新课

1.求一个小数的近似数。

例1  2.953保留两位小数、一位小数和整数,它的近似数各是多少?

(1)首先要理解保留整数、一位小数、两位小数……的含义。还可以怎样表述?

引导学生理解,保留整数就是省略整数后面的尾数;保留一位小数就是省略十分位后面的尾数,或者说精确到十分位;保留两位小数就是精确到百分位,也就是省略百分位后面的尾数

(2)求一个小数的近似数的方法是什么?

引导学生明确,仍然采用”四舍五入“法,看省略部分的最高位,是5以上的数,省去后在前一位加1,是4以下的数舍去。

在明确上述两点的基础上,让学生自己试算,得出:2.953≈2.95.

板书:2.953≈3.0  2.953≈3

引导学生分别说明省略的方法。

提问:

(1)上面求出的近似数3.0,为什么末尾的0不能去掉?

(2)上面求出的两个近似数3.0和3,哪个更精确些?

引导学生讨论后明确:3.0是保留一位小数,表示精确到十分位,3是保留整数,表示精确到个位,所以3.0要更精确些。由此可知近似数末尾的0是不能去掉的,因为它表示近似数的精确度的。

总结求近似数应注意什么?

在学生议论的基础上,概括出注意两点:

(1)要根据题目的要求取近似值。保留整数,就要看十分位;保留一位小数,就要看百分位……然后按照“四舍五入”法决定舍还是入。

(2)取近似值时,在保留的小数位里,小数末一位或几位是0的,应保留,不能去掉。

反馈:完成115页“做一做”(上面)。

订正时说明保留的方法。

2.改写成以“万”或“亿”作单位的数。

例2  1992年我国生产洗衣机7127000台。把这个数改写成用“万台”作单位的数。

提问:

(1)把7127000台改写成用“万台”作单位的数,应该用多少来除?

(2)应该把7217000缩小多少倍?

(3)小数点应该向哪个方向移动几位?

学生回答后,教师说明,为了简便只在万位后面点上小数点,去掉小数末尾的0.

板书;7127000台=712.7万台

反馈:把348000改写成以“万‘作单位的数。

348000=34.8万

师启发提问:既然把一个数改写成以”万“作单位的数,只要在万位后面点上小数点,再写上单位”万“,那么要把一个数改写成以”亿“作单位的数,应该怎么办?

3.改写成以亿作单位的数后,再求近似数。

例3  1991年我国生产原油139000000吨。把这个数改写成用”亿吨“作单位的数。

学生独立改写成139000000吨=1.39亿吨,并说出改写的方法。

提问:如果要求保留一位小数怎么办?

启发学生自己得出(接上题)≈1.4亿吨,并说出保留一位小数的方法。

反馈:完成115页下面”做一做“

订正时要注意,防止改写与省略混淆。

4.区别对比。

例2、例3的学习中,有的数需要把它改写成以”万“或”亿“作单位的'数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?

引导学生讨论后明确:

(1)求近似数需要省略某位后面的尾数。保留整数,表示精确到个位,就要看十分位是几,……然后按照”四舍五入“法决定是舍还是入。求出的是近似数,应用”≈“表示,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。最后要注意别忘记写单位”万“或”亿“,遇有单位名称的要写上单位名称。

(2)把一个数改写成以“万”或“亿”作单位的数,求的是准确数,就在“万”或‘亿“位后面点上小数点,小数末尾的0要去掉,遇有单位名称的要写上单位名称,应用”=“表示,并写上单位”万“或”亿“。

(三)巩固反馈

1.我国第二大岛海南岛的面积是32200平方千米,把这个数改写成以”万平方千米“作单位的数,再保留一位小数。

2.把135000000人改写成以”亿人“作单位的数,再保留一位小数。

(四)作业

练习二十四第1~5题。

课堂教学设计说明

本节课把求一个数的近似数与把一个数改写成以”万“或”亿“作单位的数两个概念同时进行,便于学生区别对比。

求一个数的近似数与求一个整数的近似数一样,也是根据需要用”四舍五入“法保留位数。由于保留的位数不同,求得的近似数的精确度也不一样,特别是末尾的0不能去掉的道理要让学生明白。

把一个数改写成以”万“或”亿“作单位的数,也是在前边学习的基础上进行的,最后通过对比明确这两个概念的区别,从意义、方法、符号以及末尾0的处理几方面分清,共同点是都不要忘记写单位”万“或”亿“及单位名称。

练习时采用讲练结合方式,最后通过综合练习形成熟练技巧。

板书设计

求一个小数的近似数

例1  2.953保留两位小数,一位小数和整数,它的近似数各是多少?

”四舍五入“法

2.953≈2.95                 省略百分位后面的尾数

2.953≈3.0                  省略十分位后面的尾数

2.953≈3                   省略个位后面的尾数

例2  1992年我国生产洗衣机7127000台,把这个数改写成用”万台“作单位的数。

7127000台=712.7万台

例3  1991年我国原油产量是139000000吨,把这个数改写成用”万吨“作单位的数。再保留一位小数。

139000000吨=1.39亿吨

≈1.4亿吨

求近似数与改写的区别

意义上

方法上

符号上

小数末尾0的处理上

数学有理数教学设计【教学重点及难点 3

1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

2、难点:有理数和数轴上的点的对应关系。

初一数学数轴教案 4

教学目标

【知识与能力目标】

1、巩固理解有理数的概念;

2、掌握数轴的意义及构成特点,明确其在实际中的应用;

3、会用数轴上的点表示有理数。

【过程与方法目标】

【情感态度价值观目标】

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点

【教学重点】

数轴的意义及作用。

【教学难点】

数轴上的点与有理数的直观对应关系。

课前准备

《数学》人教版七年级上册,自制课件

教学过程

一、探索新知(投影展示)

问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:

1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

2、举例说明生活中类似的事例;

3、什么叫数轴?它有哪几个要素组成?

4、数轴的用处是什么?

5、你会画数轴吗并应用它吗?

“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

(1)数轴的构成三要素:原点、方向、单位长度;

(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

5、归纳

(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

二、例题分析

例1.先画出数轴,然后在数轴上表示下列各数:

-1、5,0,-2,2,-10/3

例2、数轴上与原点距离4个长度单位的点表示的数是。

三、巩固训练

课本p10练习

自我检测

(1)数轴的三要素是;

(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

(4)如图,a、b为有理数,则a0,b0,ab

课堂小结

(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

(2)数轴的三要素:原点、正方向、单位长度。

(3)数学思想:数形结合的思想。

五、作业

1、课本14页习题1、2

2、完成“自我检测”

3、个性补充

⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

⑵画一条数轴,并表示出如下各点:1000,5000,-2000。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出-5和+5之间的所有整数。

数轴教学设计 5

一、教学目标

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法。

二、教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。

难点:正确理解有理数与数轴上点的对应关系。

三、课堂教学过程设计

(一)创设情境,引入新课

师:大家知识温度计的用途是什么?

生:温度计可以测量温度

(出示投影1)

三个温度计。其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃

我们能否用类似温度计的图形表示有理数呢?

这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

(二)探索新知,讲授新课

1.数轴的画法

与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

第一步:画直线定原点原点表示0(相当于温度计上的0℃)。

第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向。(相当于温度计上℃以上为正,0℃以下为负)。

第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度)。

(出示投影1)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右0.5个单位长度的a点表示什么数?原点向左个单位长度的b点表示什么数?

根据老师画图的`步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答。大家思考准备更正或补充。

教师根据学生回答给予肯定或否定,纠正后板书。

2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据。

学生活动:同桌之间、前后桌之间讨论,使学生从直观认识上升到理性认识。

3.尝试反馈,巩固练习

请大家回答下列问题:

(出示投影2)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

学生活动:学生思考,不准讨论,想好后举手回答。

让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解。

4.有理数与数轴上点的关系

通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示。

例1画一条数轴,并画出表示下列各数的点:

1,5,0,-2。5,

学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演。教师巡回指导,发现问题及时纠正。

例2指出数轴上a、b、c、d、e各点分别表示什么数?

先让学生思考一会,然后学生举手回答解:a表示-3;b表示;c表示3;d表示;e表。

小数近似数教学设计 6

教学目标:

使学生初步学会根据要求用四舍五入法保留一定的小数位数,求出小数的近似数。

培养学生综合运用知识的能力。

教学重难点:

重点:求一个小数的近似数及把较大数改写成以万或亿作单位的小数。

难点:把较大数改写成以万或亿作单位的小数时,容易丢掉计数单位或单位名称;求近似数与改写求准确数容易混淆。

教学步骤:

复习求整数的近似数的`方法。

引入新课,讲解求小数的近似数的方法,即根据需要用四舍五入法保留一定的小数位数。

通过例题,演示如何求一个小数的近似数,包括保留两位小数、一位小数和整数的情况。

学生练习,教师巡视指导。

总结归纳,强调求近似数时需要注意的问题。

知识结构 7

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:

定义

三要素

应用

数形结合

规定了原点、正方向、单位长度的直线叫数轴

原 点

正方向

单位长度

帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数

比较有理数大小,数轴上右边的数总比左边的数要大

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

课堂教学过程设计 8

一、从学生原有认知结构提出问题

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.

初一数学数轴教案 9

教学目的

使学生灵活应用解方程的一般步骤,提高综合解题能力。

重点、难点

1、重点:灵活应用解题步骤。

2、难点:在“灵活”二字上下功夫。

教学过程:

一、一、复习

1、一元一次方程的解题步骤。

2、分数的基本性质。

二、新授

例1.解方程(见课本)

分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。

例2.解方程(见课本)

例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。(保留整数)

分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。

三、巩固练习。

根据公式V=V0+at,填写下列表中的空格。

V V0 a t

0 2 8

48 3 14

15 5 4

76 13 7

四、小结。

若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。

五、作业。

教科书第13页第3题

小数近似数教学设计 10

教材分析:

学生在之前学过求整数的近似数,已形成基本的学习经验

学情分析:

在学习前唤起学生的经验回忆四舍五入的方法。

教学目标:

1、使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

2、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

教学重难点:

重点:

能正确的求一个小数的近似数。

难点:

怎样准确的求一个小数的近似数

(一)、创设情境,复习较大数的近似数

(二)、认定目标,导入新课

(三)、互动交流

(四)、全课总结

师:豆豆的身高0.984米。0.984是一个精确值,那我们可以说豆豆身高大约多少米呢?

师:如果保留两位小数,就要第三位数省略。 0.984的第三位小数是“3”,小于5,舍去,所以0.984≈0.98。

师:保留两位小数的近似数是精确到哪一位的?

师:你们还可以求出这个小数在别的不同情况下的近似数吗?

师:如果保留整数,就要把小数部分省略。小数第一位,也就是十分位是9,大于5,向前一位进一,所以0.984≈1。

师:保留整数的近似数是精确到哪一位的?

师:尽管两个数的大小相等,但表示的精确程度不同。求近似数时,小数末尾的零不能去掉。

师:求近似数时,保留整数,表示精确到个位。保留一位小数,表示精确到十分位。保留两位小数,表示精确到百分位……

生:精确到小数第二位,也就是百分位

生:精确到个位生:①要根据题目的要求取近似值,如果保留整数,就看十分位是几。要保留一位小数,就看百分位是几。……然后按“四舍五入法”决定是舍还是入。②取近似值时,在保留的小数位里,小数末一位或几位是0的。0应当保留,不能丢掉,为了实现学生已有知识的正迁移,通过联系生活中的。事例,复习四舍五入法取较大数的近似数,同时对学生进行思想情感教育。

作业填空:

(1)求一个小数的近似数,要根据()法来保留小数的数位,保留整数时,表示精确到()位,保留一位小数时,精确到()位,保留两位小数时,精确到()位。

(2)近似数的结果一般的说6.0比6精确,因为6.0精确到了(),6精确到了()位,所以6.0的末尾中的”0”不能去掉。

2、按要求写出表中小数的近似数。保留整数、保留一位小数、保留两位小数

4.808

20.256

1.995

板书设计:

小数的近似数:

0.984≈0.98

0.984≈1.0

想一想:0.984≈1

在表示近似数的时候,小数末尾的0不能去掉。

一键复制全文保存为WORD
相关文章