相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。相反数的性质是他们的绝对值相同。这次漂亮的小编为您带来了相反数教案精选8篇,在大家参照的同时,也可以分享一下给您最好的朋友。
3.的相反数是. 例,……
随堂练习答案
1.略 2.C B D
作业 答案
(一)必做题:
1.(1)1.6,0.2,(2),3
2.16,-20,50,8.07,
(二)选作题:
1.(1)6,(2)9
2.(1);(2).
相反数
一、学习与导学目标:
知识与技能:借助数轴理解相反数的好处,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;
过程与方法:经历概念的生成、应用,体会相反数的好处,简化数的符号,学习观察、归纳、概括的策略与方法;
情感态度:透过师生、生生合作学习,促进交流,激发兴趣。
二、学程与导程活动:
A、准备活动:
1、师生游戏“唱反调”:我们明白在小学学过的0以外的数前面加上负号“-”的数就是负数。此刻我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。
2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可推荐生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。
提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?
归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。
B、学习概念:
1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称适宜呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。
一般地,a和-a互为相反数。“-a”可读成“a的相反数”。
2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)
3、从上述好处上看,你看如何规定0的相反数更为合理?
商讨得:0的相反数仍是0,即0的相反数等于它本身。
C、应用举例:
1、两人一组,一人任说一个有理数,请同伴说出它的相反数。
2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。
3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。
结合前面相反数好处的量的学习,还可赋予-(-5)怎样的好处,从而帮忙自己理解-(-5)=5吗?
4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)
你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。
5、若a=-5,则-a=;若-x=7,则x=。
三、笔记与板书提纲:
课题应用举例中的2
活动引例应用举例中的4(学生练习),5
概念
四、练习与拓展选题:
1、教科书P18/3;
2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。
若 互为相反数,则 ,反之若 ,则 互为相反数。
4.多重符号化简
(1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以 。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
3.的相反数是. 例,……
随堂练习答案
1.略 2.C B D
作业答案
(一)必做题:
1.(1)1.6,0.2,(2),3
2.16,-20,50,8.07,
(二)选作题:
1.(1)6,(2)9
2.(1);(2).
5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.
一、素质教育目标
(一)知识教学点
1.了解:互为相反数的几何意义.
2.掌握:给出一个数能求出它的相反数.
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的能力.
(三)德育渗透点
1.通过解释相反数的几何意义,进一步渗透数形结合的思想.
2.通过求一个数的相反数,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的完整美.
2.通过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.
2.学生学法:感性认识→理性认识→练习反馈→总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的相反数.
2.难点:根据相反数的意义化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.
七、教学步骤
(一)探索新知,导入新课
1.互为相反数的概念的引出
演示活动:要一个学生向前走5步,向后走5步.
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.
[板书]
+5, -5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.
[板书]2.3 相反数
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)
师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的相反数.
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机―利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.
2.理解概念
(出示投影1)
判断:(1)-5是5的相反数( )
(2)5是-5的相反数( )
(3)与互为相反数( )
(4)-5是相反数( )
学生活动:学生讨论.
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.
教学目标
1.使学生理解相反数的意义;
2.使学生掌握求一个已知数的相反数;
3.培养学生的观察、归纳与概括的能力.
教学重点和难点
重点:理解相反数的意义,理解相反数的代数定义与几何定义的一致性.
难点:多重符号的化简.
课堂教学过程设计
一、从学生原有的认知结构提出问题
二、师生共同研究相反数的定义
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为相反数,如+5与
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为相反数.这个概念很重要,它帮助我们直观地看出相反数的意义,所以有的书上又称它为相反数的几何意义.
教学目标
1.了解相反数的意义,会求有理数的相反数;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
相反数的定义 相反数的性质及其判定 相反数的应用
三、教法建议
这节课教学的主要内容是互为相反数的概念。
由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴――相反数――绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、相反数的相关知识
课题:相反数
教学目标:
(一)知识目标:借助数轴理解相反数的好处;会求一个数的相反数;会用相反数的定义对一个式子进行化简。
(二)潜力目标:透过观察相反数在数轴上所表示的点得特征,培养学生的归纳潜力以及数形结合思想。
教学重点:相反数的好处以及双重符号的化简。
教学难点:相反数的概念以及“-a”的理解。
教学过程:
(一)创设情境,引出新课
在一东西走向的公路上,小明和小红同时从某点以相同的速度2米每秒向相反的方向行走,小明向东,小红向西。若以向东为正反向,那么1s后,小明的位置,
小红的位置();2s后,小明的位置(),小红的位置();3s后,小明的位置(),小红的位置().
提问:以上三组数之间有什么相同点和不同点?
数字相同,符号相反。
(二)给出概念
只有正负号不同的两个数互为相反数。
口答:3.5的相反数?-2的相反数?-15的`相反数?
让学生们在数轴上表示出以上3组数以及0
思考:在数轴上,每组数所在的点的位置有什么关系?
(到原点距离相同)
讨论:0的相反数是什么?
0到原点的距离为0,数轴上到原点距离为0的点只有0,故0的相反数是0本身。
(三)深化探究
正数的相反数是()负数的相反数是()。
在任意的数前面加一个“-”号,就得到该数的相反数。
提问:以下各数表示的好处:
(1)-(+5)
(2)-(-6)
(3)-0
(4)-(+1.2)
那么“-a”的好处?(数a的相反数)
“-a”是负数吗?
1.a为正数时,它的相反数-a是负数;2.a是负数时,它的相反数-a是正数;3.a为0时,-a为0.故-a不必须是负数。
(四)双重符号的化简
(1)-(+5)
(2)-(-6)
(3)-(+1.2)
(五)基础知识练习
1.决定正误。
(1)-2是相反数。
(2)-3和+3互为相反数。
(3)正数和负数互为相反数。
(4)若两个数互为相反数,则这两个数必须是一个正数,一个负数。
2.化简下列各数。
(1)-(+8)
(2)-(-3)
(3)+(-7)
(4)-(-a)
3.若-x=-7,则x=.
4.(1)若a和1-a互为相反数,那么a=()
A.0B.-1C.1D.-2
(2)若一个数的相反数是非负数,那么这个数是()
A.0B.负数C.非正数D.正数
(五)本节小结
(六)课后思考及作业
思考:如果a大于-a,那么a在数轴上的位置?
如果a小于-a,那么a在数轴上的位置?