圆锥的体积教学设计一等奖(优秀5篇)

作为一名老师,常常需要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。写教学设计需要注意哪些格式呢?下面是整理的圆锥的体积教学设计一等奖(优秀5篇),您的肯定与分享是对小编最大的鼓励。

圆锥的体积教学设计一等奖 篇1

(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?

(2)学生发言:(把它放进盛水的量杯里,看水面升高多少……)

(3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。真是一个爱动脑筋的孩子。

(4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)

(5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。(老师板书课题)

设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。

(一)、探究圆锥体积的计算公式。

1、大胆猜测:

(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆……)

(3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)

(4)老师拿教具演示等底等高。拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的。”

(5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。(把等底等高的放在桌上备用。)

2、试验探究圆锥和圆柱体积之间的关系

我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。

(1)课件出示试验记录单:

a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?

b、通过实验,你发现了什么?

(2)学生分组用等底等高的圆柱圆锥试验,做好记录。教师在组间巡回指导。

(3)汇报交流:

你们的试验结果都一样吗?这个试验说明了什么?

(4)老师用等底等高的圆柱圆锥装红色水演示。

先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?把圆柱装满水往圆锥里倒,几次才能倒完?

(教师让学生注意记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)学生拿小组内不等底等高的圆锥,换圆锥做这个试验几次,看看有没有这样的关系?(学生汇报,有的说我用自己的圆锥装了5次,才把圆柱装满;有的说,我装了2次半……)

(6)试验小结:上面的试验说明了什么?(学生小组内讨论后交流)

(这说明圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。)

3、公式推导

(1)你能把上面的试验结果用式子表示吗?(学生尝试)

(2)老师结合学生的回答板书:

圆锥的体积公式及字母公式:

(3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

进一步强调等底等高的圆锥和圆柱才存在这种关系。

设计意图:放手让学生自主探究,在实践中真正去体验圆柱和圆锥之间的关系。

(二)圆锥的体积计算公式的应用

1、已知圆锥的底面积和高,求圆锥的体积。

(1)出示例2:现在你能求出老师手中的铅锤的体积吗?(已知铅锤底面积24平方厘米,高8厘米)学生尝试解决。

(2)提问:已知圆锥的底面积和高应该怎样计算?

(3)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算。

2、已知圆锥的底面半径和高,求圆锥的体积。

(1)出示例题:

底面半径是3平方厘米,高12厘米的圆锥的体积。

(2)学生尝试解答

(3)提问:已知圆锥的底面半径和高,可以直接利用公式v=1/3兀r2h来求圆锥的体积。

3、已知圆锥的底面直径和高,求圆锥的体积。

(1)出示例3:

工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

(5)提问

4、已知圆锥的底面直径和高,可以直接利用公式。v=1/3兀(d/2)2h来求圆锥的体积。

设计意图:公式的延伸让学生对所学知识做到灵活应用,培养了学生活学活用的本领。

《圆锥的体积》教学设计 篇2

教学过程:

一、复习

1.圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

2.圆柱体积的计算公式是什么?

指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

二、新课

1.教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )

板书:圆锥的体积= ×圆柱的体积= ×底面积×高,字母公式:v= sh

2.教学练习四第3题

(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

3.巩固练习:完成练习四第4题。

4.教学例3.

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上。做完后集体订正。(注意学生最后得数的取舍方法是否正确)

四、巩固练习

1.做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2.做练习四的第8题。

(1)引导学生学生思考回答以下问题:

①这道题已知什么?求什么?

②求圆锥的体积必须知道什么?

③求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3.做练习四的第6题。

(1)指名学生先后回答下面问题:

① 圆柱的侧面积等于多少?

② 圆柱的表面积的含义是什么?怎样计算?

③ 圆柱体积的计算公式是什么?

④ 圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

五、总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

板书设计:

圆锥的体积

圆锥的体积=底面积×高×1/3

教学内容:第25~26页,例2、例3及练习四的第3~8题。

教学目的:

1.知识与技能:通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2.过程与方法:借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3.情感态度与价值观:通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

教学重点:掌握圆锥体积的计算公式。

教学难点:正确探索出圆锥体积和圆柱体积之间的关系。

《圆锥的体积》教学设计 篇3

一、教案背景

1、面向学生:小学

2、学科:数学 人教 六年级 下学期

3、课时:1

二、教学课题

本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。

学习本课需要达成以下的目标:

1、理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。

2、经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。

3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。

三、教材分析

本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。

教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。

本课重点在于圆锥体积公式的推导。鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。

从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。

四、学情分析:

学生是九山小学,属农村的学生。

美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。”通过前几节课的学习,学生已经对圆柱、圆锥的基本特征和各部分的名称有了清楚的认识,知道了圆柱体积的计算方法,并能运用圆柱体积的计算公式解决具体问题,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。推导圆锥的体积时,学生分组操作,借助倒沙子的实验,亲身感受到等底等高的圆柱与圆锥之间的3倍关系。但是他们不易发现圆柱与圆锥体积之间不具备3倍关系的前提,可借助体积关系不是3倍的实验器材,引导学生经历由表及里,层层逼近的过程,进行深度的信息加工。

教学重点:掌握圆锥体积的计算公式。

教学难点:圆锥体积公式的推导过程。

教具、学具:准备若干同样的圆柱形容器,若干与圆柱等底等高和不等底不等高的圆锥形容器,沙子,课件。

五、教学方法及流程

启发式、自主、合作、探究式。

本课流程如下:

1、教师演示,激发学生的求知欲。

2、探究新问题。

3、通过实验,解决新问题,寻求真理。

4、归纳总结圆锥的体积公式。

5、运用公式解决问题,培养实践能力。

六、教学步骤:

【学生课前准备】:

课前,让学生通过百度搜索圆锥的有关知识。

课前展示,汇报。

【复习导入】

1.复习准备

提问:上节课我们学习了圆柱的体积,怎样计算圆柱的体积呢?

2、揭示课题

这节课我们学习圆锥的体积。(板书:圆锥的体积)。猜测一下,圆锥的体积 与我们已学过的那个物体的体积有关系呢?圆锥的体积与圆柱的体积之间是怎样的关系呢?这节课我们我们就用圆柱与圆锥体积之间的关系,推导出圆锥的体积公式。

【探究新知】

推导圆锥体积的计算公式(例2)

1、教师演示,激发学生的求知欲

(1)出示铅锤,向学生说明:这是一个铅锤,近似于圆锥的形状,铅锤所占空间的大小就是铅锤的体积。

幻灯片出示铅锤

提出问题:怎样求出铅锤的体积?

学生回答后说明:刚才我们所说的办法是前面我们所学的求不规则物体体积的方法。

(2)教师演示:用一大一小两个透明圆柱容器,大圆柱

是空的,小圆柱容器里装有适量的细沙,将小圆柱里细沙慢慢倒入大圆柱中,形成一个底面相等的沙堆,让学生思考:怎样求出这个圆锥的体积。学生回答后问:上述两种方法你有什么评价?

2、探究新问题

出示圆锥形的小麦堆,问:你能用上面两种方法求出它的体积吗?使学生明确上述方法不适用于解决此类问题,有局限性。要发现一种解决此类问题的普遍方法。

3、通过实验,解决问题

首先让学生明确实验目的:用过实验得到圆锥的体积公式。让学生拿出准备好的实验材料:圆柱、圆锥、细沙。

出示实验记录单,使学生明确记录单的内容,然后按记录单的要求开始实验,并填写记录单。

实验一:感知圆锥体与圆柱体的内在联系,推导圆锥的体积公式。

等底等高的圆柱圆锥各一个,若干细沙。把空圆锥里装满细沙,倒入空圆柱里,注意观察倒的次数。(倒三次正好倒满)

学生发现:只要圆柱与圆锥等底等高,结论是一样的,那就是倒三次正好把圆柱容器倒满。

实验二:进一步实践,加深印象,拓展知识

用“等底不等高”“等高不等底”“不等底不等高”的两个圆柱、圆锥进行实验,学生发现:不能得到上述结论。

3、学生实验后填写实验报告,归纳总结圆锥的体积公式。

为了加深学生理解,用视频展示用等底等高的圆柱和圆锥实验的过程。

统一结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一

Sh 用字母表示:V= 1 / 3sh

4、 26页例3

出示例3图片

让学生审题,明确要求沙堆体积,知道底面直径和高,不能直接套公式,要先求出底面积,再用公式计算。为了便于学生理解,课件出示例3及解题过程。

【运用公式解决问题】

1、填空题。

(1)175.36立方米。

(2)一个圆锥的体积是141.3立方厘米,与它等底等高的圆柱的体积是()立方厘米。

学生独立思考后指名回答。

2、现在我们可以根据圆锥的体积公式计算出铅锤的体积了。需要知道什么条件呢?

出示:

(1)底面积:12.56平方厘米 高:3厘米

(2)底面半径:2厘米 高:3厘米

(3)底面直径:4厘米 高:3厘米

让学生从三个条件中任选一个进行计算。指一生板演,结合板演订正。订正时告诉学生:计算时结合数据的特点,可以用乘法交换律和结合律进行计算,使计算简便。

3、出示:在打谷场上,有一个近似于圆锥形的。测得它的底面直径:20米,高12米。已知每立方米小麦重735千克。这堆小麦的重量是多少?

启发学生想:要求麦堆的重量,必须先求什么?如何求出圆锥形麦堆的体积?求出麦堆的体积后,怎样求它的重量?

4、 判断下面的说法是不是正确。

(1)圆锥的体积等于圆柱体积的三分之一。

(2)圆柱的体积大于与它等底等高的圆锥的体积。

(3)圆锥的高是圆柱的高的3倍,它们的体积一定相等。

指名学生回答。第(3)题使学生明确:不知道圆柱与圆锥的关系时,不能判断它们的体积。

【课堂总结】

同学们,这节课我们学习了圆锥体积的计算,说一说你有什么收获。现在你能计算圆锥的体积吗?

【板书设计】

圆锥的体积

圆锥的体积=

等底等高V =1/3Sh

= 1/3 ×底面积×高

教学反思

一、找准教学起点

教学的成效如何,取决于教师对教学内容的把握和对学生学习情况的了解程度,求“圆锥的体积”是建立在已学“圆柱体积”的基础上进行教学的,本节课就是让学生利用等底等高的圆柱与圆锥体积之间的关系,根据已学的圆柱体积推导圆锥体积,通过这种方法沟通新旧知识之间的联系,来解决实际问题。

针对这样的学情,要推导出圆锥的体积,关键就在于教师能否采取有效的措施,沟通学生已有的知识结构。在具体实施教学的过程中,正是以这样的起点作支撑,以直观操作入手,让学生在动手操作中发现问题,解决问题,不仅便于学生接受和理解,还达到了较为理想的效果。

因此,只有认真分析教材,找准教学的起点,才能准确定位教学目标,合理安排教学时间,使教学活动紧凑严密,发挥出课堂教学的最大效益。

二、优化教学策略

通过对教材的解读和对学生的关注,将知识进行重组和整合,根据已有的教学条件,选取更合适的内容对教材进行二度加工,从而充分有效地将教材的知识激活,提高课堂教学的实效性。在探究圆锥的体积公式时,让学生利用准备的学具进行试验操作,达到了教学目标。

精彩的课堂效果往往是在不断变化的教学方法中逐步呈现出来的。每个环节的设计并非一成不变,而是要在对已学知识进行巩固的基础上有所提升,有所转变。学生在解决问题时,也不是简单的应用已知的信息,而是对原有相关的数学信息进行加工,重新组织,找出对当前问题适用的对策。因此,在解决问题的过程中,采用猜测、实验验证等不同的策略开展教学,让学生感受到数学学习充满趣味性的同时也具备一定的挑战性,问题一旦解决了,学生的思维能力随之也发生了变化。

《圆锥的体积》优秀教学设计 篇4

【教材分析】

本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。

【设计理念】

数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

【教学目标】

1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积。

【教学难点】圆锥体积公式的推导

【学情分析】

学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的知识教学,他们一定能表现出极大的热情。

【教法学法】试验探究法小组合作学习法

【教具学具准备】多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)

【教学课时】2课时

【教学流程】

第一课时

一、回顾旧知识

1、你能计算哪些规则物体的体积?

2、你能说出圆锥各部分的名称吗?

【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。

二、创设情景激发激情

展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?

【设计意图】以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)

三、试验探究合作学习(探讨圆柱与圆锥体积之间的关系)

探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?

1、猜想:猜想它们的底、高之间各有什么关系?

2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;

3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)

4、教师介绍数学专用名词:等底等高

【设计意图】通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。

探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?

1、大胆猜想:等底等高圆柱与圆锥体积之间的关系

2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)

3、小组汇报试验结论(提醒学生汇报出试验步骤)

教学预设:

(1)圆椎的体积是圆柱体积的3倍;

(2)圆锥的体积是圆柱体积的三分之一;

(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。

4、通过学生汇报的试验结论,分析归纳总结试验结论。

5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)

【设计意图】通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。

探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。

1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?

2、观察老师的试验,你发现了不等底等高的圆柱与圆锥的体积之间还有三分之一的关系吗?

3、学生通过观看试验汇报结论。

4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。

5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。

【设计意图】通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。

四、实践运用提升技能

1、判断题:【题目内容见多媒体展示】独立思考---抽生汇报---说明理由---师生评议

2、口答题:【题目内容见多媒体展示】独立思考---抽生汇报---学生评议

3、拓展运用:【课本例题3】学生分析题意---小组合作解答---学生解答展示---师生评议

【设计意图】通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。

五、谈谈收获:这节课你学到了什么呢?

六、课堂作业:

1、做在书上作业:练习四第4、7题

2、坐在作业本上作业:练习四第3题

【课后反思】

【板书设计】附后

《圆锥的体积》教学设计 篇5

教学内容:小学数学人教版第12册42页—43页

教学目标 :

1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。

3、培养学生个人的自主学习能力和小组合作学习的能力。

教学重点和难点:掌握圆锥体体积公式的推导。

教具准备:1、等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、水槽6套。

2、多媒体课件设计

教学过程 设计

(一)复习准备:

1. 怎样计算圆柱的体积?(板书:圆柱体的体积=底面积×高)

2. 一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

3. 圆锥有什么特征?

学生回答后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪烁。

(二)导入  新课

今天我们就利用这些知识探讨新的问题-----怎样计算圆锥的体积(板书课题)

(三)进行新课

1、              探讨圆锥的体积公式

教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:

学生回答,教师板书:

圆柱------(转化)------长方体

圆柱体积公式--------(推导)长方体体积公式

教师:借鉴这种方法, 为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。

(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)

(学生得出:底面积相等,高也相等。)

底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底 等高)

(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)

教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3)学生分组做实验。

A. 谁来汇报一下,你们组是怎样做实验的?

b.你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

(学生发言:圆柱体的体积是圆锥体体积的3倍)

同学们得出这个结论非常重要,其他组也是这样的吗?

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了水,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

呢?(在等底等高的情况下。)

(老师在体积公式与“等底等高”四个字上连线。)

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

今后我们求圆锥体体积就用这种方法来计算。

(三)巩固反馈

1.口答。填空:

v (立方米)

v (立方米)

60

52

126

4.5

2.出示例题学生读题,理解题意,自己解决问题。

例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

A    学生完成后,进行小组交流。

B    你是怎样想的和怎样解决问题。(提问学生多人)

C    教师板书:

×19×12=76(立方厘米)

答:它的体积是76立方米

3.练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

4、出示例2:要求学生自己读题,理解题意思。

在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)

(1)提问:从题目中你知道什么?

(2)学生独立完成后教师提问。并回答同学的质疑:3.14×( )×1.2× 表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….

5、比较:例1和例2有什么地方不同?

(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1 是直接求体积,例2是求出体积后再求重量。

我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

四、巩固练习:

1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?

2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。。

(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )

⑴ 立方米       ②3a立方米   ③  9立方米

(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米

(1)6立方米 (2)3立方米   (3)2立方米

2、             学生操作:

看看我们的教室是什么体?(长方体)

要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)

指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大的圆锥体。

五:这节课你有什么收获?

六、作业 :书本44页第3、4、5。

板书:  圆柱体的体积=底面积×高

例1:    ×19×12=76(立方厘米)

答:它的体积是76立方米

例2:(1)麦堆的体积:

3.14×( ) =12.56(平方米)12.56× ×1.2=5.024(平方米)

(2)小麦的重量:5.024×735=3692.64(平方米)≈3693(平方米)

答:它的体积是76立方米

一键复制全文保存为WORD
相关文章