数学教案人教版小学数学第十一册《比的应用》教案【优秀13篇】

作为一位无私奉献的人民教师,编写教案是必不可少的,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。我们应该怎么写教案呢?

六年级数学教案《比的应用》 1

一、 创设情境:

1、出示课本主题图:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,怎么分合理?

2、请同学们想一想:�

二、探究新知

1、出示题目:这筐橘子按3:2应该怎样分?

(1)小组合作(用小棒代替橘子,实际操作)。

(2)记录分配的过程。

(3)各小组汇报:自己的分法。

大班小班

3个2个

6个4个

30个20个

。.。.。.。.。.。.

2、出示题目:如果有140个橘子,按照3:2又应该怎样分?

(1)小组合作。

(2)交流、展示。

(3)比较不同的方法,找找他们的共同点。

方法一:

大班小班

30个20个

30个20个

。.。.。.。.。.。.

方法二:画图

140个

方法三:列式

3+2=5

140=84(个)

140=56(个)

答:大班分84个,小班分56个,比较合理。

(还会出现用整数方法来列式计算的。)

3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。

三、巩固新知。

完成课本第55页:

1、独立试做:试一试

2、独立试做练一练的1题、2题,3题抢答,并说明理由。

四、知识拓展:数学故事。(共同探讨方法)

五、总结:1、学生看书总结本节所学内容。

2、提出自己还有些疑惑的问题。

六、【板书】

比的应用

3+2=5

140=84(个)

140=56(个)

答:大班分84个,小班分56个,比较合理

提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。

这一过程要给学生提供充分的体验时间,在实际操作中,学生会不断调整一次分配的数量,不断的产生新的解题的策略,理解按一定的比例来分配的意义。

有上面小组合作的经验与发现,这次可以操作、画图、列式等不同的方法来分,从实践中发现规律,理解部分量与总量的关系。

培养学生独立思考问题、解决问题的能力。在这一过程中,学生和老师都能及时的发现不懂的,理解不好的问题,便于及时处理。

数学教案-人教版小学数学第十一册《比的应用》教案 2

教学目的:

1、了解GIS的基本构成。

2、了解GIS的基本功能,理解GIS在城市管理中的作用。

3、会使用常见的GIS产品,能使用电子地图查询所需信息。

重点与难点:

GIS基本原理;了解GIS在城市管理中的应用

教学过程:

导入:探索活动:问题:GIS是如何做到预防犯罪的?(学生答)其操作过程是什么?

(犯罪地点)数据采集——数据处理、分析(空间分析)——分析犯罪频率与犯罪模式(哪些地方易发生哪些案件)——据分析信息,分配警力

问题:GIS具有哪些功能?空间分析(犯罪的空间分布),模式分析(犯罪案件与其它因素的相关性),趋势分析(分析哪些地方可能发生案件),决策应用(分配警力)

一、GIS

1、概念:依靠计算机实现地理信息的收集、处理、存储、分析和应用的系统。

2、功能:

制作电子地图数据采集

空间查询数据分析

空间分析决策应用

模拟空间规律和发展趋势

3、工作流程:如P96图

4、构成:硬件 软件 数据 人员(其中软件是核心)

GIS与其它系统的区别

GIS有别于DBMS(数据库管理系统)。GIS具有以某种方式对空间数据进行解释和判断的能力,而不是简单的数据管理,这GIS是能对空间数据进行分析的DBMS,GIS必须包含DBMS。

GIS有别于MIS(管理信息系统)。GIS要对图形数据和属性数据库共同管理、分析和应用。MIS则只有属性数据库的管理。

GIS有别于地图数据库。地图数据库仅仅是将数字地图有组织地存放起来,不注重分析和查询,不可能去综合图形数据和属性数据进行深层次的空间分析和提供辅助决策的信息,它只是GIS的一个数据源。

GIS有别于CAD系统。二者虽然都有参考系统,都能描述图形,但CAD系统只处理规则的几何图形,属性库功能弱,更缺乏分析和判断能力。

GIS:突出空间数据,反映的信息为地理信息。

二、GIS应用:(可以解决的四类基本问题)

1、与分布、位置有关的基本问题

显示了GIS对信息空间表达的功能,它实际是回答了以下两个问题:

(1)对象(地物)在哪里?

(2)哪些地方符合特定的条件?

2、趋势分析:

传统地图:某个时间的空间特征与属性特征。

GIS:可以表示空间特征与属性特征随时间变化的过程

因此:可以分析该地物的发展趋势,即回答:从何时起发生了哪些变化?

3、模式问题:

对象的分布存在何种空间模式?即揭示各种地物之间的空间关系。

GIS由许多图层组成,每图层都表示不同的地理因素,它们之间的空间关系的融合表示了各因素之间的相互关系。

例:三层数据:交通、人口密度、商业网点分布。

通过图层的融合可以看出三者之间的关系,其用途:决策商业网点的布局。

4、模拟问题:利用数据及已掌握的规律建立模型,就可以模拟某个地方如具备某种条件时将出现的结果。

即回答:如果……将如何?

高程与被淹没地区的关系温室效应与海平面上涨的关系。

三、城市管理中的应用:功能的应用:

电子地图空间查询空间分析空间模拟趋势分析决策应用

1、城市信息管理与服务:电子地图、查询

2、规划:决策应用

3、道路交通管理:查询——决策应用

4、抗震防灾:分析模拟

5、环境管理:分析、决策

案例:GIS在抗击非典型肺炎中的应用

168.160.224.167

板书设计:

教后感:

《比的应用》教学设计参考 3

教 学 过 程

教 学 过 程 说 明

一、创设情境:

1、出示课本主题图:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,怎么分合理?

2、请同学们想一想:�

二、探究新知:

1、出示题目:这筐橘子按3:2应该怎样分?

(1)小组合作(用小棒代替橘子,实际操作)。

(2) 记录分配的过程。

(3)各小组汇报:自己的分法。

大班 小班

3个 2个

6个 4个

30个 20个

2、出示题目:如果有140个橘子,按照3:2又应该怎样分?

(1) 小组合作。

(2) 交流、展示。

(3) 比较不同的方法,找找他们的共同点。

方法一:

大班 小班

30个 20个

30个 20个

方法二:画图

140个

方法三:列式

3+2=5

140 = 84(个)

140 = 56 (个)

答:大班分84个,小班分56个,比较合理。

(还会出现用整数方法来列式计算的。)

3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。

三、巩固新知。

完成课本第55页:

1、独立试做:试一试

2、独立试做练一练的1题、2题,3题抢答,并说明理由。

四、知识拓展:数学故事。(共同探讨方法)

五、总结:1、学生看书总结本节所学内容。

2、提出自己还有些疑惑的问题。

比的应用教案 4

1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

学生汇报:

(1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )

(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

(5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

2、口答应用题

六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

口答:100÷2=50(平方米)

提问:这是一道分配问题,分谁?(100平方米)

怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)

指出:按比例分配就是把一个数量按照一定的比来分配。

<img src="

比的应用 5

教学片段:

师:同学们,昨天老师要求大家调查生活中哪些地方应用到比的知识,请给大家讲一讲,另外还要说一说你每是怎样获得这些知识的(生汇报,师适当摘录,板书)

生甲:冲调多美滋配方奶粉的一般情况,奶粉和水的比为1:7。

生乙:‘地球上的淡水含量与地球上水总量的比为3:100。

生丙:安利洗涤剂与水的正常比为1:8。

生丁:市场上出售的一种咖啡奶,咖啡和奶的比为2:9。

师:同学们从咖啡奶的这个比中,你可以知道哪些知识呢?独立思考一下,看谁得到的知识多。

教学反思

"比的应用"一课是按比例分配应用题在实际生活中的应用。长期以来,应用题教学在教材和课堂教学等方面,其应用性未能引起足够的重视,使得教学流于简单的解题训练,这种现状必须改变。我在设计此课时,力求改变以往的教学模式和方法,体现应用性。由于按比例分配计算应用较广,学生有很多应用机会,因此,课前让每一个学生到生活中调查生活中的比,并且说一说你是怎么获得这些比的。以此引人新课,使学生感受到按比例分配的计算就来源于自己的生活实际。通过从生活实际引人按比例分配的计算,并应用所学知识解决了一些简单的实际问题,使学生真切地感受到数学知识和生活实际的紧密联系,数学来源于生活,并能解决实际问题,充分体现了应用题教学的应用性。数学教学活动必须建立在学生的认知发展水平和已有的知识经验、生活经验基础之上,教师应激发学生的学习积极性。向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。

比的应用 6

【教学内容】新世纪小学数学六年级上册第55页【教材分析】数学教学内容应该是与现实密切联系的数学,能够在实际中得到应用的数学,即“现实的数学”。新世纪小学数学六年级上册《比的应用》这部分教学内容,恰恰具备了这样的特点,应该说它是学生对比的完整认识的重要组成部分。之前,除法、分数的认识,为学生认识比搭建了坚实的台阶,比的意义和化简比的学 而且比的应用的研究,也将为学生后续知识正比例的学习积累重要的感性经验。【学习目标】1、 知识与技能(1) 能运用比的意义解决按照一定的比进行分配的实际问题。(2)通过动手操作和数形结合等方式进一步体会比的意义,发展应用意识。2、过程与方法(1)经历问题解决的过程,体验解决问题策略的多样性,并选择适合自己的方法最终解决问题。(2) 通过动手操作、合作探究,相互交流,发展问题解决能力、合作交流能力和创新能力。3、情感态度与价值观(1)在问题解决过程体验成功的喜悦,对数学产生良好的情感。(2)在探究活动过程中感悟数学文化的魅力。【教学准备】小旗,水杯、水、筷子,课件【教学过程】一、情境引入 奥运圣火已经点燃,奥运盛会即将在北京召开,我想我们每一个人都希望为奥运会贡献自己的力量。今天我们也做一回奥运小使者,把奥运精神带进幼儿园。现在我们有一些印有奥运会会徽的小旗想要送给幼儿园的小朋友。[设计意图]渗透爱国主义思想教育。1. 幼儿园有两个班,要把这些小旗分给这两个班,你觉得怎么分比较合理呢?为什么?学生可能的答案:人数相同的情况下平均分,因为这样每个人分到的会同样多。2. 经调查,大班有30人,小班有20人,这回如果我们还把这些小旗平均分给这两个班,你觉得还合理吗?为什么?学生可能的答案:不合理,因为每个人分到的就不一样多了。怎么分合理呢?请你静静地想一想,先和同桌说一说,再和全班同学说说你的想法。学生可能的答案:按人数比30 :20 = 3 :2进行分配。3、3 :2表示什么意思?[设计意图]使学生体会按比分的必要性以及初步沟通按比分与平均分的关系。二、问题解决活动1:合作研究怎样按3 :2 这个“比”来分配为了研究方便,老师给大家提供了一些小旗。(一)合作研究1.合作要求:两个同学一组分工合作,每分一次,就详细记录下当次分给大班和小班小旗的面数,直到分完为止。(提示:记录时,不累计上次分得的小旗面数) 大班小班第一次 第二次 第三次 第四次 第五次 大班分得面小旗小班分得面小旗2.学生合作研究3.教师组织反馈交流u 老师在巡视的过程中,收集约三种不同的分法,分步展示在投影上。u 四人一组交流讨论要求(1)在组长带领下逐一分析每种分法,你们能理解这些分法吗?你有什么想法?你还想提出什么问题?(2)观察、比较这几种分法,你能发现什么? 插问:你觉得分一次至少需要多少面小旗?为什么?也就是可以把5面小旗按3:2进行分配,那这一次是把几面小旗按3:2进行分配的呢?学生可能出现的方法预设:分法1:每次分给大班3面,分给小班2面。表扬:认真有耐心,十二次。分法2:根据比的基本性质分,分的次数明显减少。表扬:很会动脑筋,在分的过程中及时进行了调整。分法3:先按人数分给大班30面,分给小班20面,余下的再按比分。表扬:很会联系实际情况,这种分法在实际生活中非常实用。[设计意图]本环节的设计意图有五个,其一,虽然是六年级的学生,但是动手操作的过程是必不可少的,因为逐次分配具有一定的实用价值。记录单能够恰好的保留学生最初的思维轨迹。其二,培养学生的动手操作能力、合作能力、问题解决能力。其三,让经历问题解决的过程,探索按比分的不同策略。其四,培养学生的语言表达能力、反思能力,倾听习惯,使学生在交流中获得方法的丰富和能力的提高。其五,培养学生的观察、比较、分析、综合能力(二)验证1.问题:大班和小班分得面数的比是不是3:2?你是怎么知道的? 大班小班分得小旗的总面数 人数 平均每人分到小旗的面数 30 :20 = 3 :2 = 36 :242.师生一起小结:(1) 平均每人分到的小旗同样多吗?(2) 把这些小旗按大班和小班的人数比来分配是合理的分法吗?(3) 虽然不知道小旗的总面数,但是大家动手分一分,是否就能成功的把这些小旗按3:2进行分配?[设计意图]正式打通人数比与小旗面数比之间的关系,深化比的意义。使学生初步体会按比分的本质:即每个“单位”分到同样多。(三)当我们知道总数的情况下的按比分配1.问题:如果有180面小旗,你打算怎样按3:2进行分配?你能想到几种方法?2.四人一组交流,说说你想到的方法。课件配合演示学生可能的答案:方法1:按比逐次分配。方法2:先求出一份是多少面小旗,再根据大、小班分别所占的份数,求出各应分得多少面小国旗。方法3:把比转化成分数,利用分数的意义求出大班和小班分到的小国旗的面数3.小结:当我们知道总数的情况下,既可以逐次分一分,也可以算一算。可采用的方法就更多了。平均分能理解为按比分吗?按怎样的比分呢?三、问题解决活动2:体验比的应用的广泛性(一)问题情境因为同学们表现得太出色了,老师带来了一个小礼物想要送给大家。请同学们认真倾听。边听边观察思考,你能发现什么?(二)师生活动1、 看《小星星》演奏的视频学生可能发现了水的体积和空着部分的容积竟然存在着一个比。2、 出示如下信息:杯子的容积:320ml,杯子装满水敲击出的声音为1。音阶杯水的体积与空着部分的容积的比229:3325:7423:9537:2761: 33、 提问:“29 :3表示什么意思?”。4、 算一算2这个音所需的水量。5、 每位同学选择一个自己喜欢的音,计算出所需水量。6、 教师组织反馈交流7、 倒水演奏8、 小结:比与音乐的关系最早是由古希腊的著名数学家毕达哥拉斯首先发现的,老师认为你们真的很了不起,是今天课堂上里最闪亮的小星。[设计意图]通过比与音乐的关系,拓宽学生的数学视野,体验比的应用的广泛性,培养学生的数感,感悟数学文化的魅力。四、问题解决活动3(拓展练习):用数形结合的方法,加深对比的意义的理解。(一)情境与问题花坛设计稿征集启示:某小区修建了一个36平方米的正方形大花坛,决定在花坛中栽种菊花、兰花和月季,两种花卉的种植面积的比是2 :3 :4,每种花卉的种植面积是多少平方米?请设计出栽种的方法,并画出示意图?(菊花用黄色,兰花用蓝色,月季用红色) (二)师生活动1. 提问:“2 :3 :4表示什么意思?”。2. 学生计算并根据比设计花坛。3. 教师组织反馈交流。4. 教师小结。五、总结今天的学习,你有哪些收获和感受?1、通过这节课的学习你对比有了哪些新的认识?2、把一些事物按一定的比分的时候,可以用哪些策略?3、你在生活中还能找到比的应用的例子吗?【我的思考】一、经历问题解决过程,体验策略多样性,感悟数学文化魅力随着社会的进步,科学技术的发展,义务教育的全面实施以及数学科学自身的发展,许多国家和地区都对数学课程进行了不同程度的改革,但是都几乎无一例外的把问题解决作为数学课程的重要目标之一。当学生面对实际问题或非常规问题时,能够主动利用数学的思想方法,努力的寻找解决问题的策略,并力图最终使问题得到解决。这种能力将会在学生步入社会时,使他迅速的调整和适应新的环境。所以它 使学生经历问题解决的过程,不仅是能力培养的需要,还是一种心理发展的需要。每个孩子都具备解决问题的潜力并渴望能够在解决问题时获得成功。不能不说,问题解决的过程将使孩子面对智慧和心理的双重考验,但同时也会从中获得双方面的提升。二、六年级的学生,还需要分一分吗这个问题也曾经不断的困扰我。但经过一段时间的研究后,我终于彻悟,在这里分一分与算一算具有同等地位。首先说按比分的策� (2)先数出总数,通过计算得出按比分的最终结果,在经过一次分配完成。而且第一种方法在不知总数又不方便得到总数的情况下很有实用价值。因此我设计了给幼儿园两个人数不同的班怎样合理分配小国旗的问题情境,让学生在具体的情境中进行实际操作探究,从而解决问题。“分一分”使学生切身体验到了比的意义深化过程。因为学生每一次都是在按人数比分配小国旗,每一次分得小国旗的面数比都是3 :2,最后两班分别共分得小国旗面数的比也是3 :2,成功地完成了人数比到小国旗面数比的深化,突破了教学难点。3、 拓宽学生的数学视野,感悟数学文化的魅力。不是每个人都能成为数学家,但应当使每一个公民都在一定的程度上学会“数学地”思考,即要实现数学教育发展学生数感的目的。当我们遇到可能与数学有关的问题时,一个数感发展好的学生能够自然地、有意识地把问题与数学联系起来,或者试图进一步用数学的观点和方法来处理和解释。这也就是主动地、自觉地甚至自动化地把数学应用于实际生活的思维过程。古希腊的著名哲学家、数学家毕达哥拉斯首先发现了比与音乐的关系,他比任何人更早地把一种看来好像是质的现象——声音的和谐量化。为此我设计了怎样利用比的知识,使玻璃杯敲出美妙音乐的有趣地问题解决活动。期望在这个活动中,让学生体验到比与音乐之间奇妙的联系。通过拓展学生的数学视野,让学生体会到世界上所有的事物,都可【网络研讨与评论】编写组特约指导教师教材编委、特级教师钱守旺的主要评论:l 这部分内容,新世纪小学数学教材的设计是有特色的。如果没有给出总数,怎样按3 :2 这个比来分配呢?面对这样的问题,很自然,学生首先要去理解这个3 :2 是什么意思呢?l 看了你的设计、又听了你的说课,我觉得前半部分设计还是比较好的。尤其是刚开始的引入部分,比较自然、新颖;操作活动的设计可能也更便于孩子操作。l 后半部分,活动:“杯琴”的活动建议“演奏”不必太做大。出于时间方面的考虑,把它做为数学文化介绍给孩子们就可以。如果做大,会占用很长时间。数学文化的渗透应适度,不要占时太长;教学应更多关注中、下的学生,不应过于重视形式上的东西,强化更基础的东西会更关注多数学生的发展。做为第一课时,应有一些基本的练习,书上的一些题目应穿插在我们的课堂教学当中。l 课堂热闹并不等于教学效果好,现在很多老师总是一味求新,其实这是一种偏差。l 尽可能在第一课时不要出现连比。l 这节课有两个方面还应该进一步地突出:那就是比与原来的平均分、还要联系比与分数之间的关系。网友“六年级”的评论: 1.使学生经历了探索解决问题策略的过程。2.课程设计由浅入深,循序渐进,符合学生的认知规律。 3.操作活动的设计使学生在体会数学与生活密切联系的同时,激发了学生浓厚的学习兴趣。网友“林志杰”的评论:在这里,我感受到了政治、经济、文化中心的人才果然很有深度不管在教学教学水平还是在教研方面以及个人能力方面。网友“生洁”的评论:我非常喜欢送奥运小红旗这个活动,在数学教学中也体现了我们的政治人文,与生活结合非常紧密。音乐与比的关系这个活动非常新颖,相信学生都会喜欢,而且从此激发他们学习和探究的兴趣。网友尚待解答的困惑:l 如果有学生仅停留在平均分的水平上。教师该怎么引导他按3:2分?l 比的性质没有学,会不会影响比的应用?l 百分数和比是不是数?

六年级数学教案《比的应用》 7

【教材分析】

《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习“比例”、“比例尺”的知识奠定基础。

教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。

【学生分析】

学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。

比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。

【教学目标】

1、能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的实际意义;

2、让学生通过观察、操作,经历与他人交流各自解题策略的过程,体验策略的多样性,并选择合适的方法;

3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。

【教具准备】

课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。

课上准备:有关课件、黄、蓝色颜料、量杯等。

【教学重点】理解按比分配的`实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。

【教学难点】理解按比分配的实际意义,沟通比与分数之间的联系。

【教学实录】

一、情境导入

师:同学们,作为一个大连人,你熟悉自己的家乡吗?大连给你留下最深的印象是什么?谁能用简短的一个词来概括。

生1:我最喜欢大连的星海广场。

师:你对大连的星海广场印象最深。还有吗?

生2:大连的海。

生3:大连的草坪。

师:今天,老师也给同学们带来了几幅大连的风光图片,咱们一块来看一看。

(放投影,出示大连的星海广场等图片,学生情不自禁地说出地点。)

师:看了这些风光片之后,你还有什么新的感受?谈谈你的感想。

生:这些图片大部分都是绿色,给人一种朝气蓬勃、心旷神怡的感受。

师:如果咱们把这些画面画下来,� (师板书:绿)

师:绿色充满了生命的活力。孩子们,知道绿色是怎么调配出来的吗?

生:知道,是黄色和蓝色调配出来的。(师板书:黄+蓝——)

【策略说明:优美的风景与和谐的音乐会把学生带入了一个轻松的世界,会使数学学习活动在一种轻松愉悦的氛围中展开。这种直观的图片不仅会激发学生对家乡的热爱之情,更会自然地引入到“绿色是怎么调配出来的”这一主题。】

二、实验操作

1、动手操作,调配绿色

提前给每组准备了蓝色和黄色颜料,一个小量杯,二个大量杯,大量杯上贴上组号。

师:老师给每组都准备了黄色和蓝色两种颜料,等会,你就可以用这两种颜料调配出你最喜欢的绿色来。在调配之前,先听老师说要求:在调配之前,组内先商量好想用多少ml的蓝色和黄色,记录好数据之后再开始调配。我们用小量杯来量取颜料,倒入大量杯进行调配。听清楚了吗?

生:听清楚了。

师:现在各小组可以调配了。

学生开始操作,由小组长进行分工,一人记录,一人操作,一人负责传递器材、搅拌颜料,还有一个人负责卫生工作。

师:调好的小组请组长将颜色放到前面来,并把数据记录在黑板上。

将调配好的绿色按组序一字排开,量杯上标明组号,学生能清楚地看到各组调配出来的颜色。

师:老师想请一个小组的组长汇报一下你们用了多少ml的蓝色和多少ml黄色。

生:我们第四小组用了100ml的黄色和60ml蓝色调配出了一种绿色。

师:咱们再看看其他组的数据。

【策略说明:数学内容的呈现应该是现实的、生活化的,尤其是贴近学生的生活实际,使学生体会数学与生活的联系,体会数学的应用价值。因此,教师要联系学生生活,就地取材,将贴近学生生活的题材充实到教学中去,从而丰富学生的学习材料。调配绿色是现实而有趣的学习活动,也是学生喜闻乐见的,学生是乐于参与的。第一次的配色活动没有给学生规定统一的数据,目的是让学生在自由活动的过程去观察和发现不同的结果,从而得出结论。】

2、观察发现,得出结论

(1)观察。

师:孩子们,结合这些数据,再观察这些绿色,你有什么发现?

生1:我发现黄色越多,调出来的绿色越浅;蓝色越多,调出来的绿色越深。

生2:各组调出来的绿色都不一样。

师:咦,咱们都是用黄色和蓝色来调,为什么调出来的绿色有深有浅呢?

有个别学生举手了。

师:不少同学有想法了,把你的想法在组内跟小伙伴们交流交流。(学生讨论)

生1:我发现每个组用的黄色和蓝色不一样多,调出来的绿色深浅也不一样。

师:还有其它的想法吗?生2:黄色与蓝色的量不一样,所以它们的比不一样。

生3:我认为蓝色和黄色的比不一样,所以调出来的颜色就不一样。

(2)得出结论。

比的应用教案 8

1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

2、思考:由“如果按3 :2分配”这句话你可以联想到什么?(小组讨论)

小组汇报:

(1)六年级的保洁区面积是二年级的 倍

(2)二年级的保洁区面积是六年级的

(3)六年级的保洁区面积占总面积的

(4)二年级的保洁区面积占总面积的

……

3、课件演示

4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?(请学生板演)

方法一、3+2=5 100÷5=20(平方米)

20×3=60(平方米) 20×2=40(平方米)

方法二、3+2=5 100× =60(平方米)

100× =40(平方米)

5、这道题做得对不对呢?我们怎么检验?

①两个班级的面积相加,是否等于原来的总面积。

②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

6、练习:

如果你来分配这100平方米的保管区给六(1)班和六(2)班你准备按这样的比来分配,并把两个班保管区的面积算出来。

学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

7、出示:学校新买来315本新书,要分配给六年级三个班,如果你是图书管理员,怎样分配才合理呢?

(1)小组讨论,提出各种各样的分配方案,最后统一到按照各班人数进行分配比较合理。

(2)增加条件:六(1)班34人,六(2)班36人,六(3)班35人。

(3)问:315本书按照人数分配,就是按照怎样的比来分配呢?

(4)学生独立解答。

(5)学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

8、小结:观察我们今天学习的按比例应用题有什么特点?

数学复课后教学计划 9

一、 教法分析:

1、 在三五五教学模式下,改善师生之间的关系,提高亲和力,以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

3、 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

4、 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

二、具体教学要求:

1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。

2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。

3、(理)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

4、理解复数相等的充要条件;了解复数的代数表示法及其几何意义;会进行复数代数形式的四则运算;了解复数代数形式的加、减运算的几何意义。

5、(理)理解分类加法计数原理和分类乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题;理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。

6、(理)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。

7、了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题:了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用;了解假设检验的基本思想、方法及其简单应用;了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用。

8、了解程序框图;了解工序流程图(即统筹图);能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;了解结构图;会运用结构图梳理已学过的知识、整理收集到的资料信息。

三、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

比的应用教案 10

科学探究目标:

1、 能说出搜集有关应用磁铁解决生活和生产中实际问题的信息资料的方法。

2、 能通过观察和测试,找出哪些日常生活用品中使用了磁铁。

情感态度价值观目标:

1、 愿意关注磁铁在生活和生产中的应用情况。

2、 能从别人那里获得有关磁铁在实际生活和生产中应用的实例。

科学知识目标:

1、 能列举我国古代人们利用磁铁的实例。

2、 能说出指南针是我国古代四大发明之一。

STSE目标:

能举出日常生活和生产中利用磁铁和磁性材料的实例。

教具准备:小电机、小喇叭、耳机、话筒、大头针、图片资料。

课时安排:

知识点 课例 教师活动 学生活动 设计意图 对教材另作处理的理由

认识磁的应用 磁的应用 一、教学引入

指南针是我国古代四大发明之一,两千多年前,中国人最早发现了磁石,制作了司南。在现代社会中,磁在许多方面发挥了重要作用。

二、活动二:

找找磁在生活中的应用

1、说说人们利用磁能做什么?

2、讨论:磁具有广泛的用途,我们还知道生活中什么地方用了磁?

三、活动三:哪里有磁铁?

1、想办法检验一下,音箱、话筒等物体中有没有磁铁?

2、下面这台机器中装有磁铁,让我们来找一找。给这台机器起个名字吧!

3、在哪些家用电器中还用到了磁铁?把自己的发现与同学说一说。

学生在日常生活中找出磁的应用,并进行全班交流

学生举出实例

小组合作检查,找出磁铁。并把发现全班交流。

起名:垃圾分类机

学生举例 加深对磁的认识

让学生认识到磁的用途真多!

认识磁的作用

加深对磁的认识

知识点 课例 教师活动 学生活动 设计意图 对教材另作处理的理由

认识磁的应用 磁的应用

四、活动三:磁悬浮列车

1、 引导学生看图

讨论:磁悬浮列车是根据磁铁的什么性质设计而成的?与一般列车相比,有哪些优点?

2、感受一下磁悬浮的力量吧?

3、 学习科学在线

五、拓展:磁记忆

1、你知道吗?磁还可以用来记录信息。录音机就是用磁带记录声音的,计算机磁盘也是用磁来储存信息的。

2、还能举出更多的例子吗?

学生看图

学生回答:根据磁铁的同性相斥异性相吸的性质设计而成的。

优点:速度快、噪音小。

《比的应用》教案 11

教材分析:这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习比例比例尺奠定了基础。

学情分析:对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

教学过程

活动一

1、课前调查

奶茶中牛奶和红茶的比是2∶9。从这句话中你看出了什么?

牛奶是红茶的2/9,红茶是牛奶的9/2,红茶是奶茶的/9/11,牛奶是奶茶的2/11。

2、实际操作

要配置220毫升奶茶,需要多少牛奶和多少红茶?

学生讨论,研究不同算法。

解法一:220/(2+9)=20ml,20*2=40ml,20*9=180ml

解法二:2+9=11220*(9/11)=180ml220*(2/11)=40ml

讨论出几种就是集中不强求,比较后找出自己认为的最简单的解法。

学生配置奶茶,共同品尝。

活动二

1、教学例2

书上例2,列式计算

2、生活中常常要把一个数量按一定的比来进行分配,这节课我们来研究比的应用。(板书:比的应用)接下来希望大家能够学以致用,来解决更多的实际问题。

活动三:

1、请帮忙配糖:

一种什锦糖是由奶糖、水果糖和酥糖按3:5:2混合成的,要配制这样的什锦糖50千克,需要奶糖、水果糖、酥糖各多少千克?(鼓励求异思维)

3、帮刘爷爷收电费

刘爷爷管收四家电费,四家合用一个总电表,四月份供付电费83.2元,按每家分电表的度数分摊电费,每家各应收多少钱?

住户王家张家赵家李家

分电表度数40382953

3、陆老师和高老师合租一套房,高老师住30平方米的房间,陆老师住20平方米的房间,客厅厨房等公用部分的面积是30平方米,每月房租1000元,房租怎样分配才合理?

4、总结全课

比的应用广泛,在工业、农业、医药。用途很广,同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。

《比的应用》教学设计与教学反思 12

教学分析:

按比例分配的练习。

学情分析:

已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。

教学目标:

能运用比的意X决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。

教学策略:

练习、反思、总结。

教学准备:

小黑板

教学过程:

一、基本练习

(一)六1班男生和女生的比是3:2

1.男生人数是女生人数的( )

2.女生人数是男生人数的( ),女生人数和男生人数的比是( ).

3.男生人数占全班人数的( ),男生人数和全班人数的比是( ).

4.全班人数是男生人数的( ),全班人数和男生人数的比是( ).

5.女生人数占全班人数的( ),女生人数和全班人数的比是( ).

6.全班人数是女生人数的。( ),全班人数和女生人数的比是( ).

(二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。学校买来小足球和小篮球各多少个?

把250按2比3分配,部分数各是多少

二、变式练习

1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?

2、有一种药水,按药液与水的比为1比5000配制而成。用这样的药液0.5千克,可配制这样的药水多少千克?

教学反思:

提高练习的灵活度,以及练习的形式。

《比的应用》教案 13

教学目标:

1.使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

2.使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

3.培养学生的判断分析推理能力。

教学重点:

使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:

学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

一、旧知铺垫

1.下面各题两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从甲地到乙地,行驶的速度和时间。

(3)每块地砖的面积一定,所需地砖的块数和所铺面积。

(4)书的总本数一定,每包的本数和包装的包数。

过程要求

①说一说两种量的变化情况。

②判断成什么比例。

③写出关系式。

2.根据题意用等式表示。

(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

二、创设情境引入内容

1.出示例5

画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?

学生回答后引出求水费的实际问题。

你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的'方法。

引入:这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

明确

因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

学生讨论交流

演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。让学生检验所求的未知数x是否合乎题意。检验的方法是把求出的数代入原等式(即方程),看等式是否成立。把求出的16代入等式,左式==1.6,右式==1.6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

问题:王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?

要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。

2.出示例题6的场景。

同样先让学生用已学过的方法解答,然后学习用比例的知识解答。

师:想一想,如果改变题目的条件和问题该怎样解答?

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。

让学生演示解题过程,集体修正。

3.完成做一做,

直接让学生用比例的知识解答

问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。

总结应用比例知识解答问题的步骤

(1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。

(2)依据正比例或反比例意义列出方程。

(3)解方程(求解后检验),写答。

一键复制全文保存为WORD
相关文章