计划本身是对工作进度和质量的考核标准,对大家有较强的约束和督促作用。所以计划对工作既有指导作用,又有推动作用,搞好工作计划,是建立正常的工作秩序,提高工作效率的重要手段。
一、教材教法分析
本节课是x教版普通高中课程标准实验教科书数学必修(x)的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对《xx》的学习和掌握将对今后学习本节内容《xx》和选修内容《xx》有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。
二、学情分析
一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。
三、教学目标
1、知识与技能
①通过具体情境,使学生感受建立空间直角坐标系的必要性。
②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程。
③感受类比思想在探究新知识过程中的作用。
2、过程与方法
①结合具体问题引入,诱导学生探究。
②类比学习,循序渐进。
3、情感态度与价值观
通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。
4、教学重点
本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。
5、教学难点
先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。
一。指导思想:
以发展教育的理念为指引,以学校教务处、教研组、年级组工作计划为指南,加强备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面提高学生的数学能力,尤其是提高创新意识和实践能力,为社会培养创造型人才。
二。工作目标
1、全组成员精诚团结,互相学习,取长补短,力争使我们高一数学备课组�
2、规定集体备课的时间(单周二上午第三节),分工协作,加强研讨,统一助学案,统一教学进度,每周一练,又要根据本班的学情进行复备。
3、积极参与备课组的教学资源的建设,丰富博客内容,鼓励每位教师就自己在教学中的经验、体会或教训,及时总结。
三。学情分析:
1-2班属普高班,xx3-8班属综合重点班,学习情况在整个年段较好,大部分学生基础相比较较扎实,上个学期,学生自觉性较好,自我控制力强,但部分学生上进心仍然不太强,缺少紧迫感,自我约束和自我提高能力有待加强,并且课堂内容除了基础,也要注重能力培养,适当增加难度,向高考看齐。11-17班属综合普通班,学习情况一般,课堂主体性差,自我控制能力较弱,因此在教学中需时时提醒学生,培养其自觉性,9班园艺班,10班计算机班,学习情况一般,学生学习自觉性差,会出现各种各样的违纪行为。经过一个学期的锻炼,各班数学计算能力有一定的提高,基本能脱离计算器,但很多学生偏科严重,上课走神,说话,睡觉,作业不按时按质完成,学习数学的积极性,主动性较差。所以在以后的教学中,重点在于培养学生学习数学的兴趣,增强课堂的趣味性,教师上课照顾到全部学生。同时普通班和3+2班,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
四。具体工作和措施:
1.认真学习教学大纲和钻研教材教法,把握好教材的广度、深度和难度。
2.积极进行集体备课,为了能够将集体备课落实到实处,集体备课做到统一时间,统一地点。
3..抓好每次备课组活动。遵守会议制度,活动目标明确,重点突出,形式多样,确定专题发言人,能提前准备好教案,活动能充分讨论,取长补短,做好记录。
4.本组教师年轻化程度高,因此要加大新课标的学习力度,通过备课组学习,集体讨论,个人学
5.落实新老教师的传、帮、带工作,师徒结对,促进全体教师共同成长。
6.抓好初中与高中数学基础知识、基本技能和基本数学方法的衔接教学,使知识系统化、网络化,牢固打好数学基础。
7.课堂教学要多些师生互动,活跃课堂气氛,教学中要注重渗透数学思想方法和数学双基的教学。
8.教学中要注重:
(1)强化思维过程,努力提高学生的理性思维能力;
(2)增强实践意识、重视探究和应用;
(3)倡导主动学习,营造自主探索和应用:教师要善于从教材实际和社会生活中提出问题,开设研究性课题,让学生自主学习讨论交流,在解决问题中激发兴趣、树立信心,培养钻研精神,提高数学表达能力和数学交流能力;
9.贯彻落实教学常规,作业全批全改,在作业上写好激励性的评语。
10.精讲精练,落实单元过关测试,教师要全批全改,及时认真讲评。并做好试卷补偿练习,单元卷由备课组成员轮流负责,做到侧重知识点的覆盖,难度控制(不可太难);
11.加强尖子生的。培养和后进生的转化工作。做好尖子生的培养工作及所有学生的学习情况跟踪工作,争取不让学生掉队,认真做好因材施教,积极探讨"分层教学"的教学方法;
12.指导学生尽快适应高、初中过渡阶段的学习,教学时应注意xx高、初中知识的衔接,并对学生进行学法指导。
13.尽快了解学生的数学的基本情况,进一步培养好学生学习数学的兴趣。
14.做好教情学情的调查,及时调整教与学,制定好研究性课题,组织本备课组教师做好学生的指导工作。
为圆满完成新高一的教学任务,使学生全面系统的掌握必修一到四的学习内 容,提高学生的数学素养,我们高一数学组秉承“高一决定高考,细节决定成败”的思想,从初、高中衔接起认真分析学情,积极研讨,制定本学期教学计划如下:
一、学生基本状况:
(1)本年级共12个行政班,学生860人。在中考数学成绩满分120分的基础上,我级100分以上的人很少,相对来说90分以上属于高分,绝大多数90分以下;学生数学底子薄弱,学习环节不完整,学习习惯不科学;另外,班级差异大,层次多。我们要加强集体备课力度,夯实基础,培养学生良好的学习习惯。
(2)由于初高中分别实施课改教学,高中教学内容与初中所学衔接度远远不够,存在较大断层,我们需制定并学习衔接材料,并且在新授的同时适时补充一些内容,势必挤占新课的授课时间,时间紧任务重。我们要珍惜每一堂课,优化每一环节,提高学习效率,探索高效课堂。
(3)高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,学生有的是一份执着,期望值也较大。理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,我们必须转变教学理念,并落实在课堂教学的各个环节,才能不负众望。
(4)刚刚进入高一的学生还停留在初中时的学习习惯和学习方法以及对数学学习的散漫认识上,我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
二、教学内容任务:
本学期完成数学人教A版《必修1》和《必修2》两册内容。
三、教学措施要求:
(1)注意研究学生,做好初、高中学习方法的衔接工作;加强自我学习,特别是两个纲领性文件——《国家普通高中数学课程标准教学要求》和《2015年山东省高考数学科考试说明》的学习,吃透大纲,准确把握教学要求,提高教学效率,不做无用功。
(2)加强集体备课,发动全组同志,确定阶段主讲人,集思广益,讨论优化教学方案;各班级统一进度,分层要求,分层作业,分层考试;注意运用现代化教学手段辅助数学教学;注意运用多媒体、投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
(3)着眼于基础知识与重点内容,集中精力打好基础,分项突破难点。充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。
(4)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解、训练数学能力和培养数学素养。
(5)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备。
(6)精心组织教学,保护学生学习数学的积极性,重视数学学习能力培养;抓好尖子生与后进生的辅导工作,提前展开数学分层培养和数学基础辅导。
一、内容及其解析
1。内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。
2。解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
二、目标及其解析
1。目标
掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。
2。解析
①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。
②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。
③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。
④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。
⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。
三、教学问题诊断分析
1。学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。
2。学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。
3。由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。
四、教法与学法分析
1、教法分析
新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。
2、学法分析
改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。
通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。
五、教学过程设计
问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?
[设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。
问题2:建立直线方程的实质是什么?
[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的坐标满足的条件用方程表示出来。
引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?
[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。
问题2。1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?
(过与两点的直线的斜率为)
[设计意图]让学生寻找确定直线的条件,体会动中找静。
问题2。2如何将上述条件用代数形式表示出来?
[设计意图]让学生理解和体会用坐标表示确定直线的条件。
用代数式表示出来就是,即。
问题2。3为什么说是满足条件的直线方程?
[设计意图]让学生初步感受直线与直线方程的关系。
此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。
另外以方程的解为坐标的点也在直线上。
所以我们得到经过点,斜率为的直线方程是。
问题2。4:能否说方程是经过,斜率为的直线方程?
[设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。
问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?
[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。
问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?
[设计意图]引导学生掌握解析几何取点的方法。
引导学生求出直线的点斜式方程
注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。
问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?
[设计意图]让学生初步感受解析几何求曲线方程的步骤。
①设点———用表示曲线上任一点的坐标;
②寻找条件————写出适合条件;
③列出方程————用坐标表示条件,列出方程
④化简———化方程为最简形式;
⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。
例1分别求经过点,且满足下列条件的直线的方程,并画出直线。
⑴倾斜角
⑵斜率
⑶与轴平行;
⑷与轴平行。
[设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。
注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角。
⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。
⑶当直线的倾斜角时,直线的斜率,直线方程是。
⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是。
练习:1。。
2。已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。
[设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。
问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。
[设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。
将斜率与定点代入点斜式直线方程可得:
说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。
注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。
(2)斜截式方程中的k和b有明显的几何意义。
(3)斜截式方程的使用范围和斜截式一样。
问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?
[设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。
练习:1。。
2。直线的斜率为2,在轴上的截距为,求直线的方程。
[设计意图]让学生明确截距的含义。
3。直线过点,它的斜率与直线的斜率相等,求直线的方程。
[设计意图]让学生进一步理解直线斜截式方程的结构特征。
4。已知直线过两点和,求直线的方程。
[设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔。
例2:已知直线,试讨论
(1)与平行的条件是什么?
(2)与重合的条件是什么?
(3)与垂直的条件是什么?
说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画。
②教学中从两个方面来说明,若两直线平行,则且反过来,若且,则两直线平行。
③若直线的斜率不存在,与之平行、垂直的条件分别是什么?
练习:
问题8:本节课你有哪些收获?
要点:
(1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别。
(2)两种形式的方程要在熟记的基础上灵活运用。
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。
一、上学期教学回顾
高一共四个教学班,共计160余人。杨文国带高一(一)班,高一(二)班;张忠杰带高一(三)班和高一(四)班。其中各班期末八校联考的成绩分别为:50.6分,32.8分,27.2分,34.5分,总平36.9分。学期中途因张忠杰离开学校导致频繁更换老师,(三)班、(四)班的成绩因而受到影响。期末由王山任(三)班、(四)班的数学老师。
上学期工作在学生学习的落实环节上做得不太扎实,这将是本学期重点改进的地方。
二、本学期的措施及打算
1、一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。
2、落实每周测试过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。 3.根据学生学力状况进行分层次的培优补差。
三、教学进度安排
周次,学习内容
目标要求
1、 必修4 第一章三角函数:第1至3节
周期,角的推广及表示,弧度制及互化
2、 军训
3、 第4节:正弦函数
单位圆,正弦函数定义,象限符号,诱导公式,五点法画图像,图像及性质。
4、 第5节:余弦函数,第6节:正切函数
余弦函数正切函数定义,象限符号,诱导公式,图像及性质
5、 第7节:xAsiny的图像,第8节:同角的基本关系。
图像变换规律,同角三角函数的基本关系及其运用。章节复习,章节过关测试。
6、 第二章:平面向量:第1节至第2节
向量,有向线段,向量的长及相等、平行、共线、单位向量等概念,向量的加减法运算
7、 第3节至第5节
数乘向量,基本定理,向量运算的巩固训练,平面向量的坐标表示及运算。数量积的应用。
8、 第5节至第7节
数量积的应用及坐标表示,向量应用举例。习题课,章节复习,章节过关测试。
9、 第三章:三角恒等变换:第1节至第2节
两角和差的公式得推导,记忆及灵活运用,二倍角公式得来源及运用。期中复习。
10、 期中考试
期中复习,期中考试。
11、 第三章 第3节:三角函数的简单应用
试卷讲评改错,简单应用,三角恒等变换的综合习题课,练习,章节复习,必修4基本测试。
12、 五一长假
13、 必修3 第一章:统计。第1节至第5节
统计的程序,统计图,统计方案设计,普查与抽样,抽样方法,分层抽样与系统抽样,花统计图表及读统计图表,数字特征:平均数,中位数,众数,级差,方差的意义及计算分析,
14、 第6节至第9节
样本对总本的估计及相应的数字特征的计算分析,统计实践活动,变量的相关性及例题分析,最小二乘估计。章节复习,章节过关测试。
15、 第二章:算法初步:第1节至第3节
基本思想,基本结构及设计,排序问题。
16、 第4节:几种基本语句
条件语句,循环语句,复习三角函数的基本内容,章节复习,三角函数与算法初步过关测试。
17、 第三章:概率:第1节至第2节
频率,概率,古典概率,概率计算公式。
18、 第2节至第3节
建概率模型,互斥事件,习题课节复习,章节过关测试。
19、 期末复习
20、 期末复习,期末考试
一、学生在数学学习上存在的主要问题
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:
1、进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。
4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。
5、不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高。
二、教学策略思考与实践
针对我校高一学生的具体情况,我在高一数学新教材教学实践与探究中,贯彻“因人施教,因材施教”原则。以学法指导为突破口;着重在“读、讲、练、辅、作业”等方面下功夫,取得一定效果。
加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。
一、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、高一上册数学教学教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有如下特点:
1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4、“时代性”与“应用性”:以具有时代感和现实感的素材创设情境,加强数学活动,发展应用意识。
三、高一上册数学教学教法分析:
1、选取与内容密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比、化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长。面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
五、高一上册数学教学教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
一、学生情景分析
本学期担任高一森林班的数学教学工作,学生共有66人,大部分学生学习习惯好,学习目标明确、勤奋、主动,学习动力足,少数同学质疑“学习是否有用”;另外,少数学生不能正确评价自我,这给教学工作带来了必须的难度,在学习中取得长足的提高,必须要引导他们,摆正学习态度,让他们体会到学习的乐趣,学习给他们带来的成就感,提高他们学习的积极性,还要不断的鼓励他们,培养他们良好的学习习惯。
二、教学目标
1、由数学活动、故事等等,经过分析问题的方法的教学,提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。
2、注意从实例出发,从感性提高到理性,供给生活背景,经过动手建立几何模型,让学生体会数学就在身边,培养学数学用数学的意识。
3、获得必要的。数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。
4、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
5、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
6、经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。
7、加强知识的横向联系,培养学生的数形结合的能力。
8、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
三、教材分析
本学期学习的资料主要有集合,函数和空间几何体,这些都是高中数学的基础知识,其中函数更是高中数学的学习重点,也是学习其他资料的必备基础,空间几何是高考中不可忽略的重要部分,在教学上要注重学生的逻辑思维能力、空间想象能力的培养及自学能力的逐步构成。
四、教学措施
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。
2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。
6、重视数学应用意识及应用能力的培养。
一、学生情况分析
本学期担任高一森林班的数学教学工作,学生共有66人,大部分学生学习习惯好,学习目标明确、勤奋、主动,学习动力足,少数同学质疑“学习是否有用”;另外,少数学生不能正确评价自己,这给教学工作带来了一定的难度,在学习中取得长足的进步,必须要引导他们,摆正学习态度,让他们体会到学习的乐趣,学习给他们带来的成就感,提高他们学习的积极性,还要不断的鼓励他们,培养他们良好的学习习惯。
二、教学目标
1、由数学活动、故事等等,通过分析问题的方法的教学,提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
2、注意从实例出发,从感性提高到理性,提供生活背景,通过动手建立几何模型,让学生体会数学就在身边,培养学数学用数学的意识。
3、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
4、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
5、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
6、通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
7、加强知识的横向联系,培养学生的数形结合的能力。
8、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
三、教材分析
本学期学习的内容主要有集合,函数和空间几何体,这些都是高中数学的基础知识,其中函数更是高中数学的学习重点,也是学习其他内容的必备基础,空间几何是高考中不可忽略的重要部分,在教学上要注重学生的逻辑思维能力、空间想象能力的培养及自学能力的逐步形成。
四、教学措施
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
一、指导思想
研究新教材,了解新的信息,更新观念,探求新的教学模式,加强教改力度,注重团结协作,全面贯彻党的教育方针,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。
二、基本情况
本组有教师11人,年龄结构比较合理。承担高一年级21个班的数学教学工作;其中有一人担任了学校数学科组长,一人担任副组长,本年级学生数学基础较薄弱,加之各班学生人数多,教学与管理均有一定难度。每个教师都面临要尽快熟悉、掌握新考纲的艰巨任务。
三、工作目标
高一下学期教学任务繁重,我们做到了早计划、早安排,如何科学地安排教学进度,保证教学的深度与广度,是每个教者所必须面对的课题。常规教学注重落实,加强团结协作,充分发挥备课组各位成员的特点和作用;争取学生数学素质不断提高。教学进度在备课组活动中经过全组老师讨论决定并张贴在办公室内。
四、工作要点:
(一)认真钻研教材,创造性地使用教材
虽然我们备课组的教师都不是第一次接触新教材,但对教材内容还是必须要深入地学习、研究、探讨,这样才有利于我们更好地进行教学,因此对教材的分析和研究成为首要完成的任务。我们在教学中,更应充分发挥主观能动性,钻研教材,驾驭教材,在领会编者意图的基础上创造性的使用教材,用活教材,并注意在进行数学事实、数学概念等显性知识教学的同时,注意隐性的数学课程内容(如数感、符号感、空间观念、统计观念、应用意识、推理能力等)的渗透,使数学教学真正落脚于学生的可持续发展上。
(二)立足课堂教学,努力体现新理念
课堂始终是素质教育的主阵地,是学生焕发活力的地方,所以,一切数学活动都应以学生为主体,努力创设学生动手实践、自主探索、合作交流的学习氛围,让学生在观察、实验、猜测、验证、推理与交流中领会知识、感悟知识、经历过程,并注意培养学生的问题意识,在使学生心理有安全感、自由感的环境中充分发展其问题意识、解决问题的实践能力、探索意识与创新意识。
在提倡学生合作的同时,也积极提倡教师间的合作交流,集体备课是其中的`一种形式,要积极探索集体备课的有效形式,防止一人备课,其它人照搬的简单化现象,注意集体备课时合作交流的过程资料的积累(如参与教师的教材分析、结构设计改革的发言,组内的讨论记录等)。相信在这样一个学习的机会中,大家的教学能更进一层。
加强课堂教学后的反思、教学后记的撰写。教学后记的撰写可以从正反两方面分析教学中的得与失、原因分析、改进对策等,而不仅仅是对某一教学环节的评析,至于教材的分析工作应放在备课之前进行,把它放在教学后记之中是不妥当的。
时间流逝得如此之快,我们又将迎来新的教学工作,何不赶紧为即将开展的教学工作做一个计划呢?以使教学工作顺利有序的进行,提高自己的教学质量,以下是小编帮大家整理的高一数学教学计划(精选11篇),欢迎大家阅读。
一、高考要求
①了解映射的概念,理解函数的概念;
②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法;
③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;
④理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;
⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题。
二、两点解读
重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题。
难点:①抽象函数性质的研究;②二次方程根的`分布。
三、课前训练
1.函数的定义域是 ( D )
(A) (B) (C) (D)
2.函数的反函数为 ( B )
(A) (B)
(C) (D)
3.设则 .
4.设,函数是增函数,则不等式的解集为 (2,3)
四、典型例题
例1 设,则的定义域为 ( )
(A) (B)
(C) (D)
解:∵在中,由,得, ∴,
∴在中,.
故选B
例2 已知是上的减函数,那么a的取值范围是 ( )
(A) (B) (C) (D)
解:∵是上的减函数,当时,,∴;又当时,,∴,∴,且,解得:.∴综上,,故选C
例3 函数对于任意实数满足条件,若,则
解:∵函数对于任意实数满足条件,
∴,即的周期为4,
本学期担任高一5、6两班的数学教学工作,两班学生共有110人,初中的基础参差不齐,但两个班的学生整体水平还能够;部分学生学习习惯不好,很多学生不能正确评价自我,这给教学工作带来了必须的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、教学目标、
(一)情意目标
(1)经过分析问题的方法的教学,培养学生的学习的兴趣。
(2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)本事要求
1、培养学生记忆本事。
(1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)经过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆本事。
2、培养学生的运算本事。
(1)经过概率的训练,培养学生的运算本事。
(2)加强对概念、公式、法则的`明确性和灵活性的教学,培养学生的运算本事。
(3)经过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。
(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算本事。
3、培养学生的思维本事。
(1)经过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。
(2)经过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维本事。
(3)经过不等式、函数的引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的本事。
(5)经过典型例题不一样思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
(三)知识目标
1、集合、简易逻辑
(1)理解集合、子集、补订、交集、交集的概念、了解空集和全集的意义、了解属于、包含、相等关系的意义、掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词"或"、"且"、"非"的含义、理解四种命题及其相互关系、掌握充分条件、必要条件及充要条件的意义。
(3)掌握一元二次不等式、绝对值不等式的解法。
2、函数
(1)了解映射的概念,理解函数的概念。
(2)了解函数的单调性、奇偶性的概念,掌握确定一些简单函数的单调性、奇偶性的方法。
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质。
(5)理解对数的概念,掌握对数的运算性质、掌握对数函数的概念、图像和性质。
(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
3、数列
(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
二、教学重点
1、集合、子集、补集、交集、并集、一元二次不等式的解法
四种命题、充分条件和必要条件、
2、映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用。
3、等差数列及其通项公式、等差数列前n项和公式。
等比数列及其通项公式、等比数列前n项和公式。
三、教学难点
1、四种命题、充分条件和必要条件
2、反函数、指数函数、对数函数
3、等差、等比数列的性质
四、工作措施
抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,所以,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。
(1)、扎实落实团体备课,经过团体讨论,抓住教学资料的实质,构成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。
(2)、加大课堂教改力度,培养学生的自主学习本事。最有效的学习是自主学习,所以,课堂教学要大力培养学生自主探究的精神,经过“知识的产生,发展”,逐步构成知识体系;经过“知识质疑、展活”迁移知识、应用知识,提高本事。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。