作为一位杰出的教职工,往往需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?下面是小编辛苦为大家带来的三年级数学《三角形的三边关系》教学计划(优秀3篇),希望能够给予您一些参考与帮助。
1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。
2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。
3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。
理解、掌握三角形任意两边之和大于第三边的性质。
引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。
课件、不同长度纸条若干张、实验表格。
一、创设情境
1、出示情境图。
政府
师:同学们仔细观察这幅图,想一想从老师家到学校有几条路可以走?
(学生通过观察并结合自己的生活经验,可以说出这样几条线路:从老师家直接到学校;从老师家经过政府再到学校,或者从老师家经过新华书店再到学校。)
师:你觉得老师走哪条路最近呢?为什么?
(学生会说出中间这条线路最快,但原因说不清楚。)
师:今天,这节课我们就要从数学的角度眼研究为什么走中间这条路最近。
2、大胆猜测
师:请同学们观察,在这幅图中,你可以发现几个三角形?
(学生边说边用手指出两个三角形)
师:在每个三角形里,老师从家直走到学校的路程是三角形的一条边,走旁边的路走过的路程又是这个三角形的什么呢?
师:根据大家的判断,你们猜猜看,三角形三条边之间会有怎样的关系呢?
(学生通过观察会猜出:三角形两边的和大于第三条边)教师板书。
师:是不是所有是三角形的三条边都有这样的关系呢?你们能肯定吗?
现在,我们就用数学方法来研究一下,看看三角形中,三边的关系是怎样的。?
揭示课题:三角形的三边关系。
二、自主探究
动手实验:
用三张纸条摆一个三角形。
师:同学们的桌上都有一些不同长度的纸条,请大家随意拿三张来摆三角形,看看有什么发现?(同桌合作)
教学目标:
1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。
2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。
3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。
教学重点:
理解、掌握三角形任意两边之和大于第三边的性质。
教学难点:
引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。
教学准备:
课件、不同长度纸条若干张、实验表格。
教学过程:
一、创设情境
1、出示情境图。
政府
师:同学们仔细观察这幅图,想一想从老师家到学校有几条路可以走?
(学生通过观察并结合自己的生活经验,可以说出这样几条线路:从老师家直接到学校;从老师家经过政府再到学校,或者从老师家经过新华书店再到学校。)
师:你觉得老师走哪条路最近呢?为什么?
(学生会说出中间这条线路最快,但原因说不清楚。)
师:今天,这节课我们就要从数学的角度眼研究为什么走中间这条路最近。
2、大胆猜测
师:请同学们观察,在这幅图中,你可以发现几个三角形?
(学生边说边用手指出两个三角形)
师:在每个三角形里,老师从家直走到学校的路程是三角形的一条边,走旁边的路走过的路程又是这个三角形的什么呢?
师:根据大家的判断,你们猜猜看,三角形三条边之间会有怎样的关系呢?
(学生通过观察会猜出:三角形两边的和大于第三条边)教师板书。
师:是不是所有是三角形的三条边都有这样的关系呢?你们能肯定吗?
现在,我们就用数学方法来研究一下,看看三角形中,三边的关系是怎样的?
揭示课题:三角形的三边关系。
二、自主探究
1、 动手实验1:用三张纸条摆一个三角形。
师:同学们的桌上都有一些不同长度的纸条,请大家随意拿三张来摆三角形,看看有什么发现?(同桌合作)
教学目标:
1、通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。
2、引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。
3、培养学生积极的学习态度和乐于探究的数学情感。
教学重点:掌握“三角形任意两边长度的和大于第三边”的关系。
教学难点:运用三角形三边的关系解决实际问题。
教学准备:课件
教学过程:
一、谈话引入
1、举例:生活中哪些物体的面是三角形的?
2、复习三角形的各部分名称。
提问:我们已经初步认识了三角形,关于三角形你已经知道了什么?
引导学生回忆三角形的特点:有3条边、3个角、3个顶点、3条高……
3、导入新课。
三角形还有什么特点呢?今天这节课我们来探究三角形三条边的长度关系。(板书课题)
二、交流共享
1、课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗?
2、操作交流。
(1)学生从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。
教师巡视,了解学生的操作情况。
(2)小组交流。
布置学生将各自的操作情况在四人小组内进行交流。
(3)全班交流,指名回答:你选择的是哪三根小棒,是否能围成一个三角形?
学生回答预设:
①选择8cm、5cm、4cm三根小棒,能围成三角形。
②选择5cm、4cm、2cm三根小棒,能围成三角形。
③选择8cm、4cm、2cm三根小棒,不能围成三角形。
④选择8cm、5cm、2cm三根小棒,不能围成三角形。
追问:第③种情况和第④种情况为什么不能围成三角形?
引导学生认识到:第③种情况中,4cm、2cm这两根小棒太短了,三根小棒不能首尾相接;第④种情况中,5cm、2cm这两根小棒太短了,三根小棒不能首尾相接。
教师小结:因为4cm+2cm8cm,5cm+2cm8cm,所以不能围成三角形。
3、探索规律。
师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。那能围成三角形的三根小棒的长度又有什么特点呢?
(1)布置探索任务。
从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样?
(2)学生独立探索。
(3)交流汇报。
第①种情况:4+58、4+85、5+84;
第②种情况:4+25、4+52、5+24。
小结:任意两根小棒长度的和一定大于第三根小棒。
4、验证规律。
提问:三角形任意两边长度的和一定大于第三边吗?
(1)画一画:用三角尺画一个三角形。
(2)量一量:量出三角形的各边长度。(单位:毫米)
(3)算一算:算出任意两边之和与第三边长度的关系。
(4)总结规律。
提问:通过验证,你发现三角形三边的长度有哪些关系?
师生共同总结得出:三角形任意两边长度的和大于第三边。
追问:对于“任意两边”这四个字,你是怎么理解的?
5、议一议:如果三根小棒的长度分别是8厘米、5厘米和3厘米,能围成三角形吗?为什么?
引导学生得出:5厘米长的小棒和3厘米长的小棒长度相加等于8厘米,并没有大于8厘米,所以这三根小棒不能围成三角形。
三、反馈完善
1、完成教材第78页“练一练”第1题。
先让学生独立进行判断,再组织交流汇报。交流时让学生说说判断的依据,教师可以介绍用两短边的和与第三边比较。
2、完成教材第78页“练一练”第2题。
这道题是已知三角形的两条边的长度,求第三条边的长度范围。题目提供了四个答案让学生进行选择,降低了思维难度,学生在练习时可以进行尝试。在学生完成后,教师也可以引导学生探究三角形的第三条边的长度范围,即“两边之差第三边两边之和”。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?