在教学工作者开展教学活动前,编写教案是必不可少的,借助教案可以让教学工作更科学化。那要怎么写好教案呢?熟读唐诗三百首,不会作诗也会吟,这里是细致的小编醉清风帮家人们分享的11篇整式的加减教案的相关文章,欢迎借鉴。
【学习目标】
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
【学习重难点】
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
【学习过程】
一、自主学习
1、列车在铁轨上行驶,速度为100千米/小时,
(1)当行驶2小时后行驶的路程是___________________,
(2)当行驶t小时后行驶的路程是___________________
2、苹果的原价是p元,按8折优惠出售,则单价是___________
3、某产品前年的产量是n件,去年的产量是前年的产量的m倍,则去年的产量是____________
4、长方体的包装盒的长和宽都是a,高是h,用式子表示体积为______________
5、数n的相反数是____________
请观察所列代数式包含哪些运算,有何共同运算特征
二、合作探究:(自学书本P56解决下列问题)
单项式的定义:_____________________________举例说明:_______________________
单项式的系数:__________________________
单项式的次数:__________________________
特别注意:单独的 _____________或____________也叫单项式。
三、应用新知
1、下列各式:① abc; ② 2a-b; ③b2; ④-5ab2; ⑤ a(m+n); ⑥-xy2;
⑦-5; ⑧y; ⑨ ;⑩ ;(11) 中,单项式是___________(填序号)
2、填表
单项式
系数
次数
3、 判断题(对的打√,错的打×)
(1)字母a和数字1都不是单项式()
(2) 可以看作 与3的乘积,所以式子 是单项式()
(3)单项式xyz的次数是3()
(4)- 这个单项式系数是2,次数是4()
4、如果单项式 的次数是5,求n的值。
5、思考:单项式 的系数和次数分别是多少?
注意事项:
①圆周率π是常数; ②当单项式的'系数是1或-1时,“1”通常省略不写,如x2,-a2b等;③单项式次数只与字母指数有关。
四、当堂检测
1、判断下列各代数式哪些是单项式?
(1)3a+b; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5(8)8 (9) 。
单项式有:________________________________________________________
2、下列说法正确的是( )
A、单项式xn的系数是0,次数是n;
B、单项式-x5y 的系数是-1,次数是5;
C、单项式22ab2c系数是0,次数是6 ;
D、单项式 的系数是- ,次数是3.
3、下列代数式:-mn; ; ;-x3。系数为1的单项式有_________________;系数为 的单项式有______________________;一次单项式有_______________;二次单项式有___________________。
4、填表
单项式
10%b
所含字母
系 数
次 数
5、如果 是关于x、y的5次单项式,且系数是4,求m、n的值。
五、小结与反思
1我的收获是
2、还有没解决的问题是
1、使学生熟练地确定单项式的系数、次数,多项式的项数、次数及项;
2、理解单项式、多项式、整式的概念,会把某一多项式按某一字母进行升幂或降幂排列;
3、理解同类项的概念,掌握合并同类项的法则,能够熟练地合并同类项;
4、会去括号和添括号;
5、熟练进行整式加减运算;教学重点:结合知识要点进行基础训练,整式的加减复习教案韩龙华。教学难点:立足基础训练,拓展思维空间。教学过程:
(1)整式的分类:单项式、多项式、整式
(2)单项式的系数、次数:单项式中的数字因数叫做这个单项式的系数;单项式中所有字母的指数的和叫做这个单项式的次数。注意:单独一个数或字母也是单项式;单项式的系数不能写成带分数,要写成假分数;字母的书写次序要按英文次序
(3)多项式的项数和次数:多项式里,次数最高的项的次数就是这个多项式的次数,教案《整式的加减复习教案韩龙华》。
(4)同类项:所含字母相同,相同字母的指数也相同,符合这两个条件的� 注意两相同两无关;
(5)合并同类项的法则:把系数相加,字母和字母的指数不变。
(6)去括号法则:括号前面是“+”号,把括号和它前面的“+”去掉,括号里各项都不变符号。括号前面是“—”号,把括号和它前面的“—”去掉,括号里各项都改变符号。括号前面带系数的,按乘法分配律计算。
(7)添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“—”号,括到括号里的各项都改变符号。
(8)整式的加减步骤:如果有括号,就先去括号,再合并同类项。注意:用多项式进行列式时,要用括号把它括起来,作为一个整体来使用。
(9)求代数式的值:如果能化简,就先化简,再代入求值;代入数字求值时,分数、负数的乘方要加括号;切记要先代入后计算。
大家好!今天我说课的题目《整式的加减》第1课时。
一、教材分析:
本课选自新人教版数学七年级上册第二章第二节第一课时,是学生进入初中阶段后,在学习了单项式、多项式以及有理数运算的基础上,对同类项进行辨别、探究、合并的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上,可以说合并同类项是有理数加减运算的延伸与拓展。因此,这节课是一节承上启下的课。
二、学情分析:
学生已经学了有理数的运算、单项式和多项式等内容,具备了学习本节所必须的基本运算技能。在相关知识学习的过程中,学生已经经历了一些通过代数式的运算来解决问题、进行推理的活动,能解决一些简单的现实问题,具有一定的运算能力;同时在以前的数学学习中,经历了很多合作学习、互助学习的过程,具备了一定的合作和交流的能力。
三、教学目标
1.知识目标
使学生理解多项式中同类项的概念,会识别同类项,掌握合并同类项的法则;利用合并同类项法则来化简整式。
2.能力目标:
在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。
3.情感目标
激发学生的求知欲,培养独立思考和合作交流的能力,让他们学会分享成功的喜悦。
四、教学重点、难点
重点:了解同类项的概念,掌握合并同类项的法则。
难点:正确判断同类项;准确合并同类项。
五、教学过程
1.创设情境:先用课件展示三类生活中的常见事物,让学生加以分类,再让学生根据自己的生活知识回答问题、列举生活中的'分类。这样设计的意图是以具体生活经验为背景,有效的吸引学生的注意力,增强好奇心及求知欲。
2.形成概念:让学生在下列单项式中找出具有共同特征的单项式,进行分类,并说说自己的理由。
指导学生先观察各式,再分组讨论他们的共同特点。然后思考:归为同类需要有什么共同的特征?这时教师可以引导学生看书,让学生理解同类项的定义。
这样设计可以让学生充分发挥主体作用,从自己的视角去观察、归纳、总结得出同类项的概念。有利于培养学生的观察、自主探索和合作交流的能力。
3.强化概念:下列各组中的两项是不是同类项?说明理由。
一。预习提问
1、括号外的因数是正数怎样去括号?
2、括号外的因数是负数怎样去括号?
二。教案
1.学习目标:
1)学生经过观察、合作交流、讨论总结出去括号的法则,并较为牢固地掌握。
2)能正确且较为熟练地运用去括号法则化简代数式
2.能力目标:
1)培养学生的观察、分析、归纳能力。
2)锻炼学生的语言概括能力和表达能力。
3)培养学生的知识分解、知识整合能力。
3.情感目标:
1)让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。
2)通过学生间的相互交流、沟通,培养他们的协作意识。
4.重点:去括号法则及其运用。
难点:括号前面是号,去括号时,应如何处理。
5.教学过程:
(1)回顾旧知,承前启后
1、什么叫做同类项?
2、叙述合并同类项的法则
3、若a、b、c均为有理数,请指出以下代数式中的同类项及其系数,并进行合并。
一、教学目标:
【知识与技能目标】
会用代数式表示简单问题中的数量关系,并能利用去括号、合并同类项等法则验证所探索的规律。
【过程与方法目标】
通过观察、分析、总结等一系列过程,经历探索数量关系、运用符号表示规律、运算验证规律的过程,进一步培养学生的数学逻辑思维。
【情感态度与价值观目标】
通过学生动手操作、观察、思考、猜想等过程,体验数学活动是充满着探索性和创造性的过程,通过合作交流,体会在解决问题的过程中与他人合作的重要性。
二、教学重点与难点:
重点:学会探索数量关系,运用符号表示规律。
难点:学会从不同角度探索数量关系表示规律。
三、教学方法:
教师引导式与学生探究、合作交流式相结合的方法。
四、教学用具:
日历、粉笔、黑板、多媒体等。
五、教学过程:
1、新课引入
小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。
2、合作交流,探索规律:
活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形
⑴填写下表:
⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?
★注意引导学生概括探索规律的一般步骤:
寻找数量关系;
用代数式表示规律
验证规律。
★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?
活动二:探索具体情景下事物的规律
问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?
问题2.若按图2方式摆放桌子和椅子
⑴一张桌子可坐6人,2张桌子可坐 人。
⑵按照上图方式继续排列桌子,完成下表:
问题3.如果按图3的方式将桌子拼在一起
⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?
⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐 人。
活动三:探索图表的规律
下面是20xx年五月份的日历:
1.日历图彩色方框中九个数之和与方框正中间的数有什么关系?通过计算找出这个关系。这个关系在其他方框中也成立吗? (学生观察日历方框中九个数,四人小组讨论并计算验证自己的结论,四人小组再任选一方框计算验证结论是否成立。)
2.这个关系在任何一个月的日历中也成立吗?
3.如果用a表示中间数请学生按前面找出的'关系填出框中另外8个数。
(引导学生观察横,竖列三个相邻数之间的关系。)
发现:
规律一,横列三个相邻数,后者比前者多1。
规律二,竖列三个相邻数,下一个比上一个多7
让学生想一想,并引导学生用代数式填写,如下:
a-8 a-7 a-6 a-1 a a+1 a+6 a+7 a+8
用式子表示九个数的关系:
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8)=9a
(使学生体会符号运算可以用来验证所发现的规律。)
规律三:方框中九个数的和是正中间这个数的九倍。
3、小结
其实在我们周围的生活中存在着许多很多的数学信息,今天我们就利用数学知识发现了很多身边事物所存在的数学规律。希望同学们做生活的有心人,继续去探索周围生活中的数学规律。
4、作业
观察生活,编一道探索数学规律的题
六、预期的教学效果
1.学生更进一步的体会字母表示数的意义。
2.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。
3.通过交流合作,体验在解决问题的过程中与他人合作的重要性。
教材分析
本节课的主要内容是通过用字母表示简单的数量关系引出单项式及有关的概念,为进一步学习多项式、整式的加减做充分的准备。
学情分析:
在小学他们已经学习过用字母表示数,这对于他们进一步学习用字母表示简单的数量关系是有帮助的,因此在教学过程中除了引导他们正确地用字母表示数量关系外,应把重点放在他们对单项式有关概念的理解和运用上,为整式的加减做准备。
教学目标:
知识与技能
1、了解代数式的概念,会列代数式表示简单的数量关系,掌握代数式的书写注意事项;
2、理解单项式的概念,掌握单项式的系数和次数的概念,能判断一个代数式是不是单项式,对于一个单项式能说出它的系数和次数。
过程与方法
1、通过练习、合作探究用字母表示简单的数量关系,
2、通过引导学生自主学习、合作学习及变式训练掌握单项式、单项式的系数和次数的概念。
情感态度与价值观
1、通过观察、体验、运用,让学生经历探索数量关系和变化规律的过程,感受到用字母表示数的优越性。
2、在进一步理解用字母表示数量关系的过程中建立符号意识,激发学生学习数学的积极性。
教学重点难点及突破
1、本节课的直接目标是让学生了解用字母表示数的概念,理解单项式有关的概念,能分清代数式中的那些是单项式,并知道它们的系数和次数。
2、重难点的突破在于用字母表示数量关系及理解单项式有关的概念。
教学准备:多媒体课件
【教学设计】,
一 、课前复习
字母表示数有什么意义?
(要求:自己思考1分钟,然后师友面对面,学友说给学师听!如果学友说不出,学师给学友说一遍,然后学友再说,意见达成一致后举手给全班说。)
(电子白板出示)用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来,更适合于一般规律的表达。
二 、教学过程
(一)出示学习目标,引入新课 (幻灯片)
1、理解单项式及单项式的系数、次数的概念。(重点)
2、会准确迅速地确定一个单项式的系数和次数。
3、能用单项式表示具体问题中的数量关系。(难点)
(二)自主学习(幻灯片)
认真学习课本56页思考——例题3上面的内容。并完成《作业与测试》第41页自主预习的两个小题!(5—7分钟)
(要求:自主完成《作业与测试》 ,完成之后师友交流,意见达成一致后,举手答题!)
1单项式的含义:只有数与字母的积的代数式。
单独的一个数字或字母也叫单项式。
2单项式中的数字因数叫做这个单项式的系数。
3一个单项式中,所有字母指数的和叫做这个单项式的次数。(幻灯片)
(三)合作探究
1、练习1 下列各式中哪些是单项式?如果不是,说下原因!
《整式---单项式》教学设计
(要求:个人观察思考,然后师友面对面,学友说给学师听,意见不一致可以讨论一下,意见一致后举手展示!)
学生展示完后出示结果:
《整式---单项式》教学设计
2、练习2填表:
《整式---单项式》教学设计
温馨提示:个人先观察思考,在练习本上写出答案,然后师友面对面,学师学友对一下结果,,意见不一致可以讨论一下,意见一致后举手展示!
学生展示完后出示答案!教师根据具体情况总结一下。
3、练习3 用单项式填空,并指出它们的系数和次数:
(比比谁快:个人先观察思考,在练习本上写出答案,然后师友面对面,学师学友对一下结果,,意见不一致可以讨论一下,意见一致后举手展示!)
(1)每包书有12册,n包书有 册;
(2)底边长为 a cm,高为 h cm的三角形的面积是 cm2;
(3)棱长为 a cm的正方体的体积是 cm3 ;
(4)一台电视机原价 a 元,现按原价的9折出售, 这台电视机现在的售价
是 元;
(5)一个长方形的长是0.9 m,宽是a m ,这个长方形的面积是 m2.
学生展示完后出示结果:
(四)拓展提高
我思我进步:
用字母表示数后,同一个式子在不同的问题中可以表示不同的含义。例如,在问题(5)、(6)中,所填的结果都是0.9a,一个是表示电视机的。售价,一个表示长方形的面积,你还能赋予0.9a一个含义吗?
(一本书的价格是0.9a元,这块黑板的长是0.9a。)
在书写单项式时:归纳PPT
单项式的注意点
(1)圆周率π是常数。
(2)如果单项式是单独的字母,那么它的系数是1。如:单项式c的系数是1。
(3)当一个单项式的系数是1或–1时,“1”通常省略不写,但不要误认为是0,如: a,–abc。
(4)单项式的系数是带分数时,还常写成假分数,如: x2y 写成 x2y 。
(5)单独的数字不含字母,所以它的次数是零次。
(6)单项式的系数包括它前面的符号,且只与数字因数有关。而次数只与字母有关。
三、课堂小结
让学生谈谈本节课的收获!
学友先说,学师补充的方式进行。
1、单项式(注意单个数或字母也是单项式)
2、单项式的系数(要包括其前面的负号)
3、单项式的次数(所有字母指数和)
四、布置作业
《作业与测试》整式(1)随堂学练与课后作业。
作业要求:
1、独立完成作业的良好习惯,是成长过程中的良师益友。
2、学友完成之后交学师看,学师的组长看,老师看组长的以及所有同学的作业!同时看学师的批改作业情况!
设计理念
建立平等合作,互相尊重的师生关系,创设一种师生交流的互动、互学的学习氛围。重视学生的学习进程,关注个体差异,让不同的人在数学学习中得到不同的发挥,利用课件,帮助学生理解和学习数学。通过观察、分析、动手、动脑等活动,让学生在“做中学”、“学中做”进而达到“我要学”。
教学内容
本节课是沪科版义务教育课程实验教科书七年级数学上册第二章第三节《2.3整式的加减——1.合并同类项》(第71~73页)。
学情分析
七年级年龄段的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容,让学生感受到数学来源于生活又回归生活实际,无形中产生浓厚的学习兴趣和探索热情。
学生主要通过对教学中生活情景的分析,感受数学与生活的密切联系,通过对几个问题的分析、探讨、相互交流,用类比、迁移的方法,提高对课本知识的运用能力,从而认识归纳合并同类项的法则,在练习中巩固和熟悉合并同类项的技能。最后,通过回顾与反思以及谈感受谈收获,把所学知识升华成理性认识。
教材分析
合并同类项是一堂探究活动课,是在结合学生已有的生活经验,引入字母表示数、继而介绍了代数式,以及代数式求值的基础上对同类项的定义,同类项如何进行合并的探索、研究。合并同类项是本章的一个知识重点,其法则的应用,是以后学习解方程、整式的运算、解不等式的基础。因此学好本节知识是学好后续知识的主要纽带,同时在合并同类项过程中不断运用数的运算,又合并同类项是建立在数的运算律的基础上,让学生体会到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想。
教学目标:
1、基础知识目标:
(1)在具体的情景中理解同类项的定义,并能识别同类项。
(2)在具体情景中探索合并同类项的法则,并能熟练进行合并同类项的运算。
(3)知道在求多项式的值时,一般先合并同类项再代入数值进行计算。
2、能力训练目标:
(1)通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。
(2)通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。会利用合并同类项的知识解决一些实际问题。
(3)通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力。
3、创新素质目标:
(1)通过由数的加减推广到同类项的合并,培养学生由特殊到一般的思维认知规律。
(2)引导学生从日常生活中发现数学问题,培养学生的发现意识和能力;探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识。
4、个性品质目标:
(1)培养学生勇于探索,善于发现,独立的意识,不断超越自我的创新品质。
(2)通过合并同类项,学生们能明显地感觉到数学的形式美、简洁美,感悟到学数学是美的享受,爱学、乐学数学。
教学重点:
熟练地进行合并同类项,化简代数式。
教学难点;
如何判断同类项,正确合并同类项。
教学用具:多媒体或小黑板、
教学过程:
?一、创设情景
问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余部分刷油漆,请根据图中的尺寸,算出:(1)甲乙油漆面积的和。(2)甲比乙油漆面积大多少。
(处理方式:①学生思考片刻 ②找学生代表交流自己的解答 ③教师汇总学生的解答)
板书:
(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )
(2) (2ab-πr2)-(ab-πr2)
(此时提问学生:这3个式子都是什么式子?在学生回答的基础上引出课题—从本节课开始来学习:2.3整式的加减。并板书)
二、探求新知
教师自问:如何计算(1)和(2)两个式子呢?
接着解答:本节课来学习2.3.1合并同类项(此时板书课题——1.合并同类项)
1、同类项的概念
观察多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。
学生交流、讨论。
③ 师生总结:(这就是我们今天所要介绍的同类项,此时板书:1.同类项的概念)
所含字母相同并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
强调:①所含字母相同 ②相同字母的指数也相同 简称“两同”。
一、导入
师:如果你有一罐硬币,分别为一角、五角、一元,你会怎么数?
生:一元的分一起,五角的一起,一角的一起等等。
师:这样是不是就比放在一块数方便多了,我们现在用的这个叫什么方法?
生:分类!
师:对,分类,提到生活中的钱大家都会分了。如果换成数学中的单项式,大家还会给它们分类吗?
二、教学过程
(板书:a3-2a4a33a)
师:我举个例子a3-2a4a33a,用硬币的思路,哪些属于同一面值的,应该把哪些看作一元的或5角的?
生:略
师:利用同样的方法,给下列单项式分类
(出示小黑板)
板书分出的类别
师:我们为什么要这样分类?是不是因为它们有共同点?那共同点是什么?
生:相同字母,且相同字母的指数也相同。
师:对,像具有这样相同特点的单项式,我们就把它们称之为同类项!猜想一下同类项的概念应该是怎么样的?
生:略
师:看课本P63中间(读出定义)学生画下来
练习同类项,老师在黑板上给出一个单项式,学生自己写两个以上的同类项,然后找几个学生读出自己写的,大家评论!
师:大家思考一下这些同类项之间可以进行加减运算吗?
师:比如说,我们刚才提到的硬币,是不是一元的和一元的`就属同类项了,五角的和五角的属于同类项。我左手拿一个一元硬币,右手拿三个一元硬币,他们能加起来吗?
板书1硬币+3硬币=4硬币
师:我们现在试一下把硬币换成字母会是什么效果
1x+3x=4x
师:怎么计算的?
生:(1+3)x
师:1x+3x=(1+3)x这种形式我们是不是似曾相识呢?
分配律!(简单的再说一下分配律,反过来就是把两个或几个加数的共同因素提取出来)
师:这里提到“共同因素”,作为同类项的几个单项式之间是不是都有共同因素,我们同样可以把它们提取出来,这样同类项之间就能进一步的运算了。我们把这样的运算叫做合并同类项
猜想合并同类项的定义,然后看课本P63下面,定义画下来
试做题7x2+2x+7+3x-8x2-6
师:我们前面学习过的交换律、分配律、结合律在这里可以用吗?
师:因为多项式中的字母表示的是数,所以我们也可以运用交换律,结合律、分配率把多项式中的同类项合并。
开始做题,做完题之后
注意:
(1)合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分的系数不变
(2)指出计算结果按某字母降幂(升幂)的形式排列
(3)一找,二搬,三并,四计算
讲解例题1
练习题第一题(学生写上黑板)
纠错(小黑板)
三、小结
1、什么是同类项?
2、几个常数项是不是同类项?
3、同类项与系数有关吗?
4、什么叫合并同类项?
5、合并同类项的步骤是什么?
四、课下练习
P69习题1.2第一题
教学目标:
1、理解同类项的概念,在具体情景中认识同类项。
2、初步体会数学与人类生活的密切联系。
教学重点:理解同类项的概念。
教学难点:根据同类项的概念在多项式中找同类项。
教学过程:
一、复习引入
1、创设问题情境
(1)5个人+8个人= ;?
(2)5只羊+8只羊= ;?
(3)5个人+8只羊= 。?
2、观察下列各单项式,把�
8x2y, -mn2, 5a, -x2y, 7mn2,, 9a, -, 0, 0.4mn2,,2xy2.
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示出来。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
二、讲授新课
1、同类项的定义:
我们常常把具有相同特征的事物归为一类。8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类。8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项。另外,所有的常数项都是同类项。比如,前面提到的、0与也是同类项。
2、例题:
【例1】判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x与3mx是同类项。( )
(2)2ab与-5ab是同类项。 ( )
(3)3x2y与-yx2是同类项。( )
(4)5ab2与-2ab2c是同类项。 ( )
(5)23与32是同类项。( )
【例2】指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5;
(2)3x2y-2xy2+xy2-yx2.
【例3】k取何值时,3xky与-x2y是同类项?
【例4】若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。
(1) (s+t)-(s-t)-(s+t)+(s-t);
(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t.
3、课堂练习:请写出2ab2c3的一个同类项。你能写出多少个?它本身是自己的同类项吗?
三、课时小结
1、理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断几个单项式是否是同类项。
2、这堂课运用到分类思想和整体思想等数学思想方法。
3、学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。
四、课堂作业
若2amb2m+3n与a2n-3b8的和仍是一个单项式,则m与 n的值分别是 。?
第2课时 合并同类项
教学目的:
1、理解合并同类项的概念,掌握合并同类项的法则。
2、渗透分类和类比的思想方法。
教学重点:正确合并同类项。
教学难点:找出同类项并正确地合并。
教学过程:
一、复习引入
为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。问:
1、他们两次共买了多少本软面抄和多少支水笔?
2、若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?
二、讲授新课
1、合并同类项的定义:
(学生讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元。
由此可得:把多项式中的同类项合并成一项,叫做合并同类项。(板书:合并同类项。)
2、例题:
【例1】找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项。
根据以上合并同类项的实例,让学生讨论、归纳,得出合并同类项的法则:
把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
【例2】下列各题合并同类项的结果对不对?若不对,请改正。
(1)2x2+3x2=5x4; (2)3x+2y=5xy;
(3)7x2-3x2=4; (4)9a2b-9ba2=0.
【例3】合并下列多项式中的同类项:
(1)2a2b-3a2b+0.5a2b;
(2)a3-a2b+ab2+a2b-ab2+b3;
(3)5(x+y)3-2(x-y)4-2(x+y)3+(y-x)4.
(用不同的记号标出各同类项,会减少运算错误,当然熟练后可以不再标出。其中第(3)题应把(x+y)、(x-y)看作一个整体,特别注意(x-y)2n=(y-x)2n,n为正整数。)
【例4】求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.
试一试 把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?
(通过比较这两种方法,使学生认识到:在求多项式的值时,常常先合并同类项,再求值,这样比较简便。)
3、课堂练习:课本P65练习第1,2,3题。
三、课时小结
1、要牢记法则,熟练正确地合并同类项,以防止出现类似2x2+3x2=5x4的错误。
2、从实际问题中类比概括得出合并同类项法则并能运用法则,正确地合并同类项。
四、课堂作业
课本P69习题2.2的第1题。
第3课时 去括号
教学目标:
1、能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
2、经历带有括号的有理数的运算,发现去括号时符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。
教学重点:准确应用去括号法则将整式化简。
教学难点:括号前面是“-”号,去括号时,括号内各项要变号,容易产生错误。
教学目的
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析
重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程
一、复习
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题
例1 (P166例1)
求单项式5x2y,-2 x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)
例2(P166例2)
求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)
=3x2-6x+5+4x2-7x-6 (去括号)
=7x2+x-1 (合并同类项)
例3。(P166例3)
求2x2+xy+3y2与x2-xy+2y2的'差。
解:(2x2+xy+3y2)-( x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习
P167:1,2,3,4。
补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2, 求2A-3B
四、小结
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。
基础训练同步练习1。
教学目标:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
过程与方法:
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
分层次教学,讲授、练习相结合。
情感、态度、价值观:
培养学生观察、归纳、概括及运算能力
教学重点:
掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
教学难点:单项式概念的建立。
教学过程:
一、复习引入:
1、列代数式
(1)若正方形的边长为a,则正方形的面积是;
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;
(3)若x表示正方形棱长,则正方形的体积是
(4)若m表示一个有理数,则它的相反数是;
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)
2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?(1)x?12;(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2πr,abc,-m为例,让学生说出它们31的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
4.例题:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1;
②1x;
③πr2;
④-3a2b
答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x的商;③是,它的系数是π,次数是2;④是,它的系数是-32,次数是3。
例2:下面各题的判断是否正确?
①-7xy2的系数是7;
②-x2y3与x3没有系数;
③-ab3c2的次数是0+3+2;
④-a3的系数是-1;
⑤-32x2y3的次数是7;
⑥1πr2h的系数是1.33
通过其中的反例练习及例题,强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关。
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。