作为一名教职工,常常要根据教学需要编写教案,编写教案助于积累教学经验,不断提高教学质量。如何把教案做到重点突出呢?的小编精心为您带来了圆的认识教学教案优秀5篇,希望大家可以喜欢并分享出去。
教学内容:九年义务教育六年制小学数学第十一册第106-109页。
教学目的:1.使学生了解圆是一种曲线图形。
2.使学生理解和掌握圆的各部分名称及圆的特征。
3.会用圆规画园。
4.培养学生的观察比较、分析推理,抽象概括等能力。
教学重点:圆的各部分名称及圆的特征。
教学难点:圆的特征。
教具准备:多媒体课件一套、圆规等。
学具准备:圆形纸片、圆规、直尺等。
教学过程:
一、设疑揭题,明确目标
1.复习。
同学们,我们已经学过一些平面图形,你能从这辆自行车平面示意图中找出我们已学过的平面图形吗?
(课件显示由平面图形构成的自行车示意图,根据学生的回答,同步闪亮 )
2.设疑。
你们知道自行车架为什么要做成三角形?
(根据学生回答:三角形具有稳定性,课件闪亮自行车三角形的框架部分。)
而自行车的轮胎为什么要做成圆形的呢?
(课件闪动自行车的轮胎后圆跳出,师在黑板上贴上圆形纸片,然后学生试回答)
3.揭题。
大家现在知道的只是其中的一些表面原因,其实这里面具有一定的科学知识,你们想知道吗?学完了这节课,我们就会知道的。(板书课题)
4.量标。
同学们,看到课题你想知道些什么呢?
(根据生答,师概括板书:图形、名称、特征、画圆)
[评析:(1)上课伊始,以"自行车的轮胎为什么要做成圆的"为疑,只能引起学生用浮浅的知识来回答,怎样用科学的道理来解释呢?学生急于想知道,这样可激发学生探索知识的兴趣与热情。(2)量标教学,是高年级学生自主学习的必要环节,让学生根据课题提出自己所需学习的内容,充分发挥其自我探索的能力。]
二、自主探究,合作交流
(一)直观比较、了解概念。(圆)
圆跟我们已学过的平面图形有什么不一样呢?
(课件出示,先闪动围成三角形和四边形的线段,再将围成圆的曲线用红线走了一圈。根据学生的回答,师板书:圆是曲线图形)
你能举出日常生活中哪些物体上有圆吗?(生举例)
(二)操作引路,感知概念(名称、特征)
1.折圆。
请同学们拿出你们课前准备好的圆形纸片,象老师这样对折。打开,再换个方向对折、再打开,反复折几次,你可以发现什么?(有许多痕交于中间一点)
2.量折痕。
再请同学们用直尺量一量刚才折的每一条痕的长度,你又发现了什么?(折痕长度相等)
3.量点到圆上距离。
最后请同学们再用直尺量一量,中间这个点到圆任意一点的距离,你还可以发现什么?(距离也都相等)
[评析:通过学生的折和量,来发现感知圆里的知识,帮助学生形成表象,为学生探索圆各部分的名称,猜想圆的特征,起了很好的铺垫作用。同时在动手操作活动中,让学生参与了学习过程,使学生在知识的形成过程中发挥主体作用。]
(三)自学交流,理解名称。
1.自学课本,初知名称。
同学们通过刚才动手发现圆里的知识还真不少,数学家们把这些知识都规定为不同的名称,你们想知道吗?请同学们自学课本的第4-9小节。
2.交流消化,理解名称。
(1)圆里各部分的名称有哪些?
(根据学生的回答师板书:圆心、直径、半径)
(2)什么叫圆心?圆心就是我们刚才折圆时所发现的什么?
(3)数学家又是如何规定圆的直径的呢?
(随生答,媒体同步动画直径的过程,先后出示直径d及直径概念)
那么,直径就是我们刚才折圆时的什么?(折痕)
(4)什么叫半径?圆上任意一点是什么意思?(随生答,课件闪烁圆周上的许多点再动画出半径。)
半径就是我们在量圆时所发现的什么?
(5)(课件显示出圆的圆心、直径、半径的整体图及概念,学生齐读概念一遍)
3.练习。下面哪些是圆的半径或直径?为什么?
[评析:在学生经过操作,对圆的知识有了一定的感性认识的基础上,让学生自学课文,再通过互相交流,多媒体的演示,使学生逐步建立了完整的正确的概念。]
(四)猜想验证,概括特征。
1.分组讨论,进行猜想。
同学们,你能根据我们刚才折圆、量圆时所发现的,以及我们已学习的什么叫直径、半径来想一想、猜一猜,圆可能会有哪些特征呢?(学生分小组讨论)
2.交流讨论,提出猜想。
请各小组把讨论情况在全班交流一下。
(根据交流情况,师板书猜想内容)
3.各自验证,全班交流。
同学们真爱动脑筋,猜想了圆有这么多的特征。但是你们的猜想都对吗?你自己能不能想一个办法来验证一下,试试看。
(全班学生各自想法验证:有的折圆,有的量折痕,有的在圆中画直径、半径,有的量直径、半径,有的列表记录量的数据,有的嘴里在不停地唠叨着概念……)
请同学们把你验证的方法和得出的结果告诉大家。
4.媒体演示,加深理解。
(多媒体将学生验证的圆的特征运用了旋转、重合等声像并茂的手段,进行了动态演示)
5.学生概括,总结特征。
谁能把圆的特征用自己的语言来归纳概括一下。
(随生答,师板书:所有直径都相等,所有半径都相等,d=2,t=d/2)
这就是我们验证出来的`圆的特征,同学们同意吗?
(异口同声:同意。一生提反对意见:这些特征必须在同一个圆里才能成立。)
哎呀,你真聪明,把大家容易疏忽的问题给提出来了,真了不起。(师边说边板书:在同一个圆里)
6.对照验证,完善猜想。那么,你们的猜想有问题吗?(生:有,必须强调在同一个圆里)其实,你们刚才的猜想与验证,都是在自己手中同一个圆里进行折圆,量圆的,那么你们猜想对所说的圆里,就是指自己手中的同一个圆里。(师在猜想内容的"圆里"前补上"同一个")
这样,你们的猜想内容与验证结果意思就怎么样?
(随生答,师在"猜想"与"验证"之间连线同时板书:正确)
7.练习,填空。
[评析:运用"猜想验证"的方法,引导学生借助操作过程与已学过的半径、直径对圆可能有哪些特征,进行了合理的猜想;通过小组讨论交流、相互补充,提高了学生分析推理能力;然后让学生自己想办法验证,使学生的求异思维得到发展;再通过多媒体的演示,最后让学生自己归纳概括出圆的特征,便是水到渠成了。]
(五)自我实践,学会画圆。
1.自学画法,实践画圆。
(学生结合课本108页圆的画法,边看边学会用圆规画圆)
2.学生自己介绍画圆步骤。
(随生介绍,师分步板书:定距、定点、旋转)
怎样定距?(学生边介绍边演示)这个圆规两脚之间的距离就是什么?(生:圆的半径)
在画圆时,你发现固定的一点与旋转一周各是圆的什么?
3.(师揭下贴在黑板上的圆形纸片,在贴纸片的地方示范画圆,小结画圆步骤)
[评析;画圆是这节课的非重点内容,则通过学生自我实践便可掌握。教学时间分配强略得当。]
三、自练反馈,巩固新知
1.填空。
(1)圆是平面上的一种( )。
(2)左图圆内固定的一点O是这个圆的( );线段OB是这个圆的( ),用字母( )表示;线段AC叫做圆的( ),用字母( )表示。
(3)在同一个圆里,直径与半径的比是( )。
(4)把一个圆规的两脚张开4厘米,画一个圆,它的直径是( )。
2.判断。
(1)两端都在圆上的线段叫做直径。( )
(2)圆里有无数条半径,无数条直径。( )
(3)所有的半径都相等,所有的直径都相等。( )
(4)半径决定着圆的大小,圆心决定着圆的位置。( )
(5)画直径5厘米的圆,圆规两脚间的距离是2.5厘米。( )
(6)直径6厘米的圆比半径4厘米的圆大。( )
3.操作。
学会量没有圆心的圆的直径。(课本练习二十五第1题)
四、运用新知,质疑释疑
1.现在,大家一定能运用这节课所学的知识,解释一下"为什么车轮都要做成圆形,车轴应装在哪里?"
(多媒体放完车轮分别是正方形、椭圆形、圆形的行进动画后,给学生直观给予提示,学生各抒己见,直对中心。)
2.学了"圆的认识"这节课,你还想知道些什么?
(生甲:圆也有周长和面积吗?生乙:怎样在操场上画一个很大的圆?……)
圆的周长和面积以后会学到的。谁见过怎样在操场上画一个很大的圆?(学生互相释疑)
五、总结全课,储存新知
这节课你自己运用了哪些学习方法,学到了哪些知识?
六、学生作业,深化新知
1.课堂作业:练习二十五第3.4题。
2.课后实践:量自行车轮胎外直径。
[总评:本课是在该校"自主探究式"数学课堂教学模式的框架下设计的。按"设疑揭题,明确目标一一自主探究,合作交流--自练反馈,巩固新知--运用新知,质疑释疑一一总结全课,储存新知"的程序实施操作的。教学过程中,充分放手让学生参与知识的形成过程,让他们自己去发现、去猜想、去验证、去讨论、去合作……从而实行自主探究",以培养学生的创新精神和实践能力为重点,努力使学生成为真正的学习主人。]
教学内容:
教材第5~6页的内容。
教学目标:
1、通过折纸活动,探究并发现圆是轴对称图形,体会圆的对称性,并进一步理解同一个圆里半径和直径的关系。
2、整理已学过的轴对称图形,进一步理解轴对称图形的特征。
3、在活动过程中发展学生的空间观念。
教学重点:
进一步理解同一个圆的半径和直径的关系,并体会圆的对称性。
教学难点:
在折纸过程中体会圆的特征。
教学准备:
教学课件、学生课前剪的圆、长方形等纸片。
教学过程:
学生活动
(二次备课)
一、情境导入
师:阳阳利用杯盖画了一个圆,并剪了下来,这个圆的圆心在哪里呢?他想快速找出来,你有什么办法吗?要想解决这个问题,我们还是要看看圆还有哪些特点。
二、预习反馈
点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
1、动手操作,体会圆是轴对称图形。
组织学生拿出课前准备的'圆形纸片,沿直径对折,观察是否完全重合。再沿另一条直径对折看看。让学生多对折几次后,提问:你发现什么了?
生:沿任意一条直径对折,对折的两部分都能完全重合,可知圆是轴对称图形,对称轴是直径所在的直线,而且圆有无数条对称轴。(可能学生说对称轴时容易说成:直径是圆的对称轴。教师应引导学生知道对称轴是直线,而直径只是一条线段)
教师和学生回顾圆的半径、直径知识,找到所折圆的直径和半径,让学生通过折纸进一步理解:同一圆的半径都相等,直径都相等,直径是半径的2倍。
2、总结学过的图形中哪些是轴对称图形?有几条对称轴?
组织学生利用课前准备的长方形、正方形等纸片折一折,将结果填到教材第5页表格中。然后让学生汇报。
(1)正方形是轴对称图形,有4条对称轴;
(2)长方形是轴对称图形,有2条对称轴;
(3)一般三角形不是轴对称图形,等腰三角形和等边三角形是轴对称图形,等腰三角形有1条对称轴,等边三角形有3条对称轴;
(4)一般梯形不是轴对称图形,等腰梯形是轴对称图形,它有1条对称轴;
(5)教师利用平行四边形纸片折叠演示强调:虽然平行四边形被对角线分成了2个三角形,它们的形状、大小都相同,但它们不能完全重合,所以一般平行四边形不是轴对称图形。
3、引导学生进行折纸活动,找到圆心。
师:我们知道了圆是轴对称图形,对称轴是直径所在的直线,所以开始时的问题:帮阳阳找一个圆的圆心,是不是就容易解决了?
组织学生用“对折再对折”的方法找到圆心,并在小组内交流这样做的想法。
通过学习,学生能够说出:通过对称就能找到直径,而圆心在直径上,所以找到两条直径的交点就是圆心。
4、课件出示组合图形(教材第5页下面图形)。
让学生和同伴交流后找出各图的对称轴。
后面图形的对称轴较多,可能有的学生找不全,教师可引导学生:
因为圆中任意一条直径所在的直线都是它的对称轴,所以可以先找每个图形中多边形的对称轴,如果它正好过圆心,那么它也就是整个图形的对称轴。
四、巩固练习
1、完成教材第6页“练一练”第1题。
独立完成后全班交流。第2个图形容易画错,可以让学生沿对称轴对折一下看是否完全重叠。
2、
完成教材第6页“练一练”第2题。
独立完成后说一说理由。
五、拓展提升
1、判断。
(1)一张圆形的纸,至少对折3次才能找到圆心。(×)
(2)长方形、正方形、圆和平行四边形都是轴对称图形。(×)
(3)圆的对称轴一定经过圆心。(√)
2、用两个圆设计一个只有一条对称轴的图案。
示例:
六、课堂总结
引导学生小结本节内容。
七、作业布置
教材第6页“练一练”第3、4题。
教师根据学生预习的情况,有侧重点地调整教学方案。
学生动手折一折,并和同学说说自己的发现。
学生可以先用手里的圆形纸片摆一摆再画。
点名回答并说出理由。
教学目的:
1、使学生认识圆,知道各部分的名称。
2、掌握圆的特征,理解直径和半径的相互关系。
3、初步学会用圆规画圆。
4、通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。
教具准备:
圆规、实物投影仪、计算机软件。
教学过程:
一、复习导入
我想问一下,大家喜欢动画片吗 7 (喜欢)今天我也给大家带来一段动画片,想看吗?(想)请大家看屏幕,(出示课件)这四个小动物在举行自行车比赛,最后结果怎样呢?请往下看,现在比赛还没有结束,你能猜一下,最后谁能得第一?(小狗),为什么呢?(因为小狗的车轮是圆的)。那小白兔的车轮也是圆的,那你为什么不说它得第一呢 2 (因为小白兔的车轮的车轴没在中间)那为什么车轮做成圆的,车轴装在中间,跑起来就又快又稳呢?学完这节课,你就会明白的。
二、新课教学
1、实物举例。
一年级的时候,咱们已经初小认识过圆了,谁来说一说,除了车轮是圆的以外,在我们周围的物体上哪里还有圆?
圆和咱们原来学过的三角形。四边形相比有什么不同?
三角形和四边形都是由什么围成的?(线段)我们就把它们叫做平面上的直线图形。而圆是什么围成的。(曲线)所以,我们就把圆叫做平面上的曲线图形。
2、尝试画圆,初步感知圆的特征。
对于三角形和四边形的特征,咱们前面已经研究过了。
而作为由曲线围成的平面图形 -- 圆来说也有自己的特征,下我们就一起来研究一下。
为了便于咱们研究,咱们先来画一个圆,大家会画圆吗?(会)
谁能到黑板前快速画一个圆。(评价。你能敢上来画一个圆,已经很好了,请回。)
看来只用一只粉笔,是不太容易把圆画好的,想画好,咱们就得借住工具。下面就请大家拿出圆规试着画出一个圆,如果你画的时候有什么困难,就打开课本 108 页,看书是怎样说的。
(学生用圆规画圆。)
请大家坐好,谁能上来给大家演示一下,怎样用圆规画圆。
(让学生总结用圆规画圆要注意什么,教师适当补充。)
3、认识圆各部分的名称。
针尖固定的这一点我们就把它叫做圆心,也就是圆中心的一点,圆心一般用字母O表示。(板书:圆心O)
圆规两脚间的距离也就是连接圆心和圆上任意一点的一条线段。像这样的线段,我们就把它叫做半径,一般用字母 r 表示,谁来说一下什么叫半径?(学生回答。)
大家看,我在圆里再画一条线段,注意观察,我是怎样画的?
也就是通过圆心,并且两端都在圆上。
像这样的线段,我们就把它叫做圆的直径,一般用字母 d 表示。
板书: " 直径 d" 。
谁来说一下,什么叫直径?(评价:很好很完整。)同桌同学互相说一下,什么叫直径。
4、分组讨论圆的特征。
刚才我们认识了圆心、半径和直径,下面请大家结合刚才咱们画圆的过程,讨论一下在同一个圆里(板书)半径有什么特征?直径有什么特征?它们之间有什么关系?请各小组开始讨论一下。(指导学生讨论。)
现在我请一个同学把你们组讨论的结果说一下。(同学反馈。)
评价:你们组讨论出了半径与直径的关系,很好。其他同学又做了补充。
过渡:刚才大家讨论出了这么多圆的特征,到底是不是这样呢?请大家看屏幕。(计算机演示特征。)
大家看,计算机演示的和大家讨论的结果一样吗?(一样。)
也就是说在同一个圆里,半径有多少条?并且所有半径的长度都怎样?(板书:无数条长度都相等)
也就是说,直径也具备这些特征。(完成板书。)
刚才大家还讨论出了半径与直径的关系,你能用字母表示一下它们之间的关系吗?
板书: d = 2r
或 r = d/2
5、巩固练习。
通过前面的学习我们又知道了圆的特征,下面我们一起做两组题,看哪些同学掌握得最好。先来看第一组,请你读一下题目要求(微机出示第一组,指名回答。)刚才我们知道了在同一个圆里,半径与直径的关系,现在咱们如果知道了半径的长度,能求出直径的长度吗?知道了直径的长度,能求半径吗?做完共同订正。
通过这两组的练习,可以看出,刚才大家掌握还是很不错的,下面请大家还得继续努力?
下面就请大家用这种方法再出几个圆,先画一个小点的,换个地方再画个大点。
再请大家画出一个半径为 3 厘米的圆;并分别用字母标出它的圆心、半径、直径。
请同桌同学互相用尺子检查一下,画对了吗?
请大家坐好,刚才咱们进一步巩固了怎样用圆规画圆,结合刚才画圆的过程,大家体会一下。画圆时圆心和半径各起了什么作用?
师:也就是:圆心决定圆的位置
半径决定圆的'大小
6、全课总结。
大家回忆一下,通过刚才的学习,咱们都学会了哪些知识?
①认识圆的各部分的名称。
②知道了圆的特征。
③学会了用圆规画圆。
三、实际应用,深化知识。
记得刚上课看动画片时,大家都猜小狗能得第一,结果是不是这样的呢?请大家继续片下看。(播放动画。)
小狗果真得了第一,谁来说一下,小狗为什么能得第一?为什么车轴装在圆心上,谁跑得又快又稳呢?
学生发言(略)。
师总结:因为从圆心到圆上任意一点的距离是相等的,所以,车轴装在回心上,就能保证车轴到地面的距离始终不变,因此,车子跑起来就又快又稳,大家明白了吗?
教学目标:
知识与技能:
(1)初步认识圆,知道圆的各部分名称,了解圆的基本特征。
(2)会正确使用圆规画圆。
过程与方法:通过实践操作活动初步认识圆,进一步发展空间观念。
情感态度与价值观:
体验到圆在日常生活中的应用并感受到圆的。
教学重点:
通过操作和观察活动初步认识圆。
教学难点:
认识到同一个圆中半径、直径都相等;用圆的特征来解决生活中的问题和解释生活中的现象。
教学准备:
多媒体课件、圆片、圆规、直尺、铅笔、投影仪等。
教学过程:
情景引入:
同学们看,这里有许多生活中常见的物品,它们都是什么形状的?
今天我们就来学习有关圆的知识。(板书课题:圆的初步认识)
1、圆的认识:
折一折:圆是轴对称图形
我们学过轴对称,说的就是如果一个图形能沿着一条轴对折,两边完全重合,这样的图形就是轴对称图形,那么圆是不是轴对称图形?你能折一折吗?
2、认识圆心
实际上,我们能像这样折出无数条对称轴。
那么请同学们现在观察一下,你折出的这些折痕有没有交叉?是不是相交在同一点?
这一点在圆的中心叫“圆心”,用字母O来表示。
3、认识直径
把一条折痕用笔和尺描出来。
通过圆心并且两端都在圆上的线段,称为:直径,通常用字母d表示。
想一想,圆有多少条直径?它们的长度一样吗?
4、认识半径
圆心把每条直径都分成了两部分,我们来量一量刚才描出的线段,从圆心到这两头的长度,它们一样么?
半径就是连接圆心和圆上任意一点的线段。
半径一般用r表示。
想一想,一个圆里有多少条半径?它们长度一样么?
半径r和直径d又有什么样的数量关系?
即时练习:找出圆的半径和直径。
用圆规画圆:
1、介绍圆规的构造
看这是圆规,圆规它有两个脚,一个是带针尖的脚,另一个是带有铅笔的脚,还有一个把手,用来旋转的。
2、学生尝试用圆规画圆
请同学们在练习纸左上角的范围内试着任意画一个圆。
说一说你是怎么操作的。
3、介绍圆规的正确用法
想一想:
1、我们刚才画圆的时候,怎样确定圆的位置?(由针尖的位置决定,针尖所在的点就是圆的圆心。因此圆心决定圆的位置。)
2、怎样确定圆的大小?(笔尖和针尖的距离决定的',它们之间的距离就是圆的半径。因此半径决定圆的大小。)
画半径3厘米的圆:
1、画圆的时候可以先在纸上标出圆心(画一个X),确定好圆的位置,然后把圆规的两脚分开,定好两脚间的距离(即半径3厘米)。
2、把有针尖的一只脚固定在一点(即圆心)上
3、把装有铅笔的一只脚绕圆心旋转一周,就画出一个圆。
4、再画一个半径为4cm的圆。
画同心圆:
这些大小不同的圆有什么共同点?它们有同一个圆心。
这些有同一个圆心但半径不同的圆,我们称为同心圆。
练习:以O为圆心画出半径为2cm、3cm、4cm的同心圆
四、深化认识:
1、不用圆规还可以画圆吗?2.美丽的圆3.课堂总结
教学目标:
1,知识与能力:使学生认识圆,会用圆规画圆,掌握圆的特征,理解同圆或等圆中半径与直径的关系。
2,过程与方法:培养学生的探索能力。
3,情感,态度,价值观:渗透数学来源于生活又应用于生活的道理。
教学重点:
会用圆规画圆,掌握圆的特征,理解同圆或等圆中半径与直径的关系。
教学难点:
理解同圆或等圆中半径和直径的关系。
教学准备:
课件,白纸,圆规。
教学过程:
一.激趣设疑,导入新课。
1,示四驱车,问这是什么?
2,(课件)出示汽车的图片,问,你们发现它们都有个共同的特点是什么?
追问:为什么车轮都是圆的,如果不是圆的会怎样?
3,导入,板题:圆的认识
4,你想了解圆的哪些知识?(学生自由回答)
二,在画圆的教学活动中探索新知。
1,任意画圆,体会什么是圆。
(1)画一个圆
(2)展示,比较哪个圆,哪个不圆?问:怎么就画圆了?
(3)请学生说说你是怎样用圆规画圆的?
2.用圆规画圆,理解圆的构成及圆心。
(1)让学生在白纸的四个角上分别画一个圆,边画边想:圆是由什么组成的?(圆周,圆心)
(2)展示(圆的和不圆的对比)说说为什么有的同学画不圆?怎样就画圆了?
(3)画圆时固定的一点谁知道叫什么?(板书:圆心)
(4)标出你所画的圆的圆心。
(5)圆心的重要性:你能说说你是怎样确定圆的位置的?
3,通过画圆感悟什么是半径及特征。
(1)请你在画一个比刚才再大一点的圆,边画边思考:怎么就比刚才大一点了?
(2)在圆上表示出圆规两交叉开的长度。
(3)师:这条线段也有名称,你能试着给它起个名字吗?(板:半径)
(4)请你任选一个圆画出它的半径,边画边想:你能画多少条?你发现了什么?体会半径是什么样的线段?
(5)汇报追问:你怎么知道半径长度都相等的?
(6)判断,哪条线段是半径?
(7)讨论:什么叫半径?(汇报)
(8)再画一个比刚才小一点的圆,说说你认为圆的大小和什么有关?
4,通过画圆感悟什么是直径及特征。
(1)课件演示:问:看这两条半径怎样了?
(2)你知道这条线段叫什么吗?(板:直径)
(3)画一个圆,并画出它的直径,边画边想:半径和直径有什么区别?
(4)判断,哪条线段是直径?
(5)说说什么叫直径?
(6)观察直径有什么特征?
5,画一个圆,并画出一条半径和一条直径。
观察讨论:半径和直径有什么关系?(汇报)
三,解决生活中的实际问题。
1,说说为什么车轮是圆的?
2,马路上的井盖为什么做成圆的?
四,谈谈你的收获。