作为一位不辞辛劳的人民教师,总不可避免地需要编写教案,借助教案可以有效提升自己的教学能力。来参考自己需要的教案吧!该页是漂亮的小编帮大家整理的高二数学教案(精选6篇),欢迎阅读,希望能够帮助到大家。
教学目标:
1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。
2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。
教学重点:
体会直角坐标系的作用。
教学难点:
能够建立适当的直角坐标系,解决数学问题。
授课类型:
新授课
教学模式:
启发、诱导发现教学。
教 具:
多媒体、实物投影仪
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动
学生回顾
刻画一个几何图形的位置,需要设定一个参照系
1、数轴 它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置
2、确定点的位置就是求出这个点在设定的坐标系中的坐标
四、数学运用
例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置
例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区。试问:埋设地下管线m的计划需要修改吗?
变式训练
1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程
2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程
例3 已知Q(a,b),分别按下列条件求出P 的坐标
(1)P是点Q 关于点M(m,n)的对称点
(2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)
变式训练
用两种以上的方法证明:三角形的三条高线交于一点。
思考
通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?
五、小 结:本节课学习了以下内容:
1.平面直角坐标系的意义。
2. 利用平面直角坐标系解决相应的数学问题。
六、课后作业:
教学目标
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
4.掌握向量垂直的条件。
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积 www. 的应用
教学过程
平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).
并规定0向量与任何向量的数量积为0.
1、向量数量积是一个向量还是一个数量?它的。符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替。
(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.
第06课时
2、2、3 直线的参数方程
学习目标
1.了解直线参数方程的条件及参数的意义;
2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。
学习过程
一、学前准备
复习:
1、若由 共线,则存在实数 ,使得 ,
2、设 为 方向上的 ,则 =︱ ︱ ;
3、经过点 ,倾斜角为 的直线的普通方程为 。
二、新课导学
探究新知(预习教材P35~P39,找出疑惑之处)
1、选择怎样的参数,才能使直线上任一点M的坐标 与点 的坐标 和倾斜角 联系起来呢?由于倾斜角可以与方向联系, 与 可以用距离或线段 数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。
如图,在直线上任取一点 ,则 = ,
而直线
的单位方向
向量
=( , )
因为 ,所以存在实数 ,使得 = ,即有 ,因此,经过点
,倾斜角为 的直线的参数方程为:
2.方程中参数的几何意义是什么?
应用示例
例1.已知直线 与抛物线 交于A、B两点,求线段AB的长和点 到A ,B两点的距离之积。(教材P36例1)
解:
例2.经过点 作直线 ,交椭圆 于 两点,如果点 恰好为线段 的中点,求直线 的方程。(教材P37例2)
解:
反馈练习
1.直线 上两点A ,B对应的参数值为 ,则 =( )
A、0 B、
C、4 D、2
2.设直线 经过点 ,倾斜角为 ,
(1)求直线 的参数方程;
(2)求直线 和直线 的交点到点 的距离;
(3)求直线 和圆 的两个交点到点 的距离的和与积。
三、总结提升
本节小结
1.本节学习了哪些内容?
答:1.了解直线参数方程的条件及参数的意义;
2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。
学习评价
一、自我评价
你完成本节导学案的情况为( )
A.很好 B.较好 C. 一般 D.较差
课后作业
1. 已知过点 ,斜率为 的直线和抛物线 相交于 两点,设线段 的中点为 ,求点 的坐标。
2.经过点 作直线交双曲线 于 两点,如果点 为线段 的中点,求直线 的方程
3.过抛物线 的焦点作倾斜角为 的弦AB,求弦AB的长及弦的中点M到焦点F的距离。
1、向量的数乘运算
(1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:λa,它的长度和方向规定如下:
①|λa|=|λ||a|;
②当λ>0时,λa的方向与a的方向相同;
当λ<0时,λa的方向与a的方向相反。
(2)运算律:设λ,μ为任意实数,则有:
①λ(μa)=(λμ)a;
②(λ+μ)a=λa+μa;
③λ(a+b)=λa+λb;
特别地,有(—λ)a=—(λa)=λ(—a);
λ(a—b)=λa—λb。
[点睛](1)实数与向量可以进行数乘运算,但不能进行加减运算,如λ+a,λ—a均无法运算。
(2)λa的结果为向量,所以当λ=0时,得到的结果为0而不是0。
2、向量共线的条件
向量a(a≠0)与b共线,当且仅当有一个实数λ,使b=λa。
[点睛](1)定理中a是非零向量,其原因是:若a=0,b≠0时,虽有a与b共线,但不存在实数λ使b=λa成立;若a=b=0,a与b显然共线,但实数λ不,任一实数λ都能使b=λa成立。
(2)a是非零向量,b可以是0,这时0=λa,所以有λ=0,如果b不是0,那么λ是不为零的实数。
3、向量的线性运算
向量的加、减、数乘运算统称为向量的线性运算。对于任意向量a,b及任意实数λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。
[小试身手]
1、判断下列命题是否正确。(正确的打“√”,错误的打“×”)
(1)λa的方向与a的方向一致。()
(2)共线向量定理中,条件a≠0可以去掉。()
(3)对于任意实数m和向量a,b,若ma=mb,则a=b。()
答案:(1)×(2)×(3)×
2、若|a|=1,|b|=2,且a与b方向相同,则下列关系式正确的是()
A、b=2aB、b=—2a
C、a=2bD、a=—2b
答案:A
3、在四边形ABCD中,若=—12,则此四边形是()
A、平行四边形B、菱形
C、梯形D、矩形
答案:C
4、化简:2(3a+4b)—7a=XXXXXX。
答案:—a+8b
向量的线性运算
[例1]化简下列各式:
(1)3(6a+b)—9a+13b;
(2)12?3a+2b?—a+12b—212a+38b;
(3)2(5a—4b+c)—3(a—3b+c)—7a。
[解](1)原式=18a+3b—9a—3b=9a。
(2)原式=122a+32b—a—34b=a+34b—a—34b=0。
(3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。
向量线性运算的方法
向量的线性运算类似于代数多项式的运算,共线向量可以合并,即“合并同类项”“提取公因式”,这里的“同类项”“公因式”指的是向量。
一、学习者特征分析
本节课内容是面向高二下学期的学生,主要是进行思维的训练。学生在高一的时候已经学过这些数学思维方法,但是对这些知识还没有进行概念化的归纳和专门的训练。学生不知道分析法和综合法的时候还是会用一点,以以往的经验,学生一旦学习概念后,反而觉得难度大,概念混淆,因此,这一教学内容的设计是针对学生的这一情况,设计专题学习网站,通过学生之间经过学习,交流,课后反复思考的,进一步深化概念的过程,培养学生的数学思维能力。
二、教学目标
知识与技能
1、 体会数学思维中的分析法和综合法;
2、 会用分析法和综合法去解决问题。
过程与方法
1、 通过对分析法综合法的学习,培养学生的数学思维能力;
2、 培养学生的数学阅读和理解能力;
3、 培养学生的评价和反思能力。
情感态度与价值观
1. 交流、分享运用数学思维解决问题的喜悦;
2. 提高学生学习数学的兴趣;
3. 增强学习数学的信心。
三、教学内容
本节课是数学思维训练专题课,专门训练学生利用分析法和综合法解题。分析法在数学中特指从结果(结论)出发追溯其产生原因的思维方法,即执果索因法。综合思维方法:综合是以已知性质和分析为基础的,从已知出发逐步推求位未知的思考方法,即执果导因法。这两种数学思维方法是数学思维方法中最基础也是最重要的方法,是学生的思维训练的重要内容。
四、教学策略的设计
1、 情境的设计
情境描述
情境简要描述
呈现方式
趣味问题
从前有个国王在处死那些犯了罪的臣子的时候,总是出一些这样那样的智力题给犯人做,用这种方法给那些更聪明的人一条生路,有一位正直的青年叫亚瑟,不幸得罪了国王,国王判他死罪,他所面临的问题是:“这里有三个盒子,金盒,银盒和铅盒,免死金牌放在其中一个盒子内,每只盒子各写一句话,但其中只有一句是真的,你要是猜中了免死金牌在哪个盒子里,就免你一死罪。”聪明的亚瑟经过推理而获知免死金牌所放的盒子,从而救了自己的命,请问亚瑟是如何推理的?
网页
2、 教学资源的设计
资源类型
资源内容简要描述
资源来源
相关故事
通过有趣的推理故事,如“推理救命的故事”,“宝藏的故事,用于激发学生的学习兴趣。
网上下载
学习网站
专题学习网站,嵌入了经过修改适用于本课的论坛,在线测试等。
自行制作
3、 教学工具:计算机
4、 教学策略:自主探究学习策略,任务驱动策略、反思策略
5、 教学环境:网络教室
五、教学流程设计
1、创设情景,吸引学生注意
教师活动
学生活动
资源/工具
设计思想
提出“推理救命问题”
积极思考,寻找方法
学习网站
以具有趣味性的故事入手,吸引学生的注意,点明本节课的目的。
2、自主探究,获取知识
教师活动
学生活动
资源/工具
设计思想
1、初试牛刀:让学生试做思维训练题。
2、挑战高考题:在高考题中充分体现分析法,综合法。
3、举一反三:让学生学会总结
学以致用:
4、把本节的方法应用到解决数学问题中。
积极思考,互相交流,发现问题,解决问题。
学习网站
1、让学生在轻松活泼的氛围下带着问题,自主、积极地学习,有助于培养学生的自我探索的能力。
2、超级链接控制性好,交互性强,可让学生在较短的时间内收集积累更多的信息,拓宽学生的知识面。
3、培养学生收集信息、处理信息的能力。
3、总结概念,深化概念
教师活动
学生活动
资源/工具
设计思想
归纳本节的方法:分析法和综合法。并指出:数学思维的训练不单只是一节简单的专题课,我们的同学在平常多留心身边事物,多思考问题,不断提高数学思维能力。
体会分析法和综合法的概念,并在论坛上发表自己对概念的理解。
学习网站论坛
通过对具体问题的概念化,加深对概念的理解。
4、自主交流,知识迁移
教师活动
学生活动
资源/工具
设计思想
提出宝藏问题并指导学生利用BBs论坛进行讨论
学生在论坛里充分地发表自己的看法
学习网站论坛
通过自主交流,增强分析问题的能力和解决问题的能力
5、在线测试,评价及反馈
教师活动
学生活动
资源/工具
设计思想
利用学习网站制作一些简单的训练题目
独立完成在线的测试
学习网站
及时反馈课堂学习效果。
6、课后任务
教师活动
学生活动
资源/工具
设计思想
布置课后任务:在网络上收集推理分析的相关例子,在学习网站的论坛上讨论。
记录要求,并在课后完成。
网络资源和学习网站
通过课后的任务训练,进一步提高学生的数学思维能力,把思维训练延续到课堂外。
1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。
2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。
3、通过对四种命题之间关系的学习,培养学生逻辑推理能力
4、初步培养学生反证法的数学思维。
二、教学分析
重点:四种命题;难点:四种命题的关系
1.本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
2.教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,
3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。
三、教学手段和方法(演示教学法和循序渐进导入法)
1.以故事形式入题
2多媒体演示
四、教学过程
(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。
这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!
设计意图:创设情景,激发学生学习兴趣
(二)复习提问:
1.命题“同位角相等,两直线平行”的条件与结论各是什么?
2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等。
设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础。
(三)新课讲解:
1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。
2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。
3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。