高二数学优秀教案优秀6篇

随着社会一步步向前发展,我们可以使用讲话稿的机会越来越多,讲话稿可以起到指引或总结会议,传达贯彻上级精神等作用。那么讲话稿一般是怎么写的呢?为大家精心整理了高二数学优秀教案优秀6篇,希望能够帮助到大家。

高二数学教案 篇1

教学目标

1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;

2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;

3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;

4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;

5.通过让中国学习联盟胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.

教学建议

教材分析

1. 知识结构

2.重点难点分析

重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.

椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的`研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.

(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.

另外要注意到定义中对“常数”的限定即常数要大于 .这样规定是为了避免出现两种特殊情况,即:“当常数等于 时轨迹是一条线段;当常数小于 时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.

(2)根据椭圆的定义求标准方程,应注意下面几点:

①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

②设椭圆的焦距为 ,椭圆上任一点到两个焦点的距离为 ,令 ,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.

③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.

④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程 “而没有证明,”方程 的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.

(3)两种标准方程的椭圆异同点

中心在原点、焦点分别在 轴上, 轴上的椭圆标准方程分别为: , .它们的相同点是:形状相同、大小相同,都有 , .不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.

椭圆的焦点在 轴上 标准方程中 项的分母较大;

椭圆的焦点在 轴上 标准方程中 项的分母较大.

另外,形如 中,只要 , , 同号,★WWW.BAIHUAWEN.com★就是椭圆方程,它可以化为 .

(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.

教法建议

(1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习兴趣.

为激发学生学习圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。

例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵循这个原理.相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的.

(2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历

为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的认识.

(3)对椭圆的定义的引入,要注意借助于直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,形成正确的概念。

教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。

教师可事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。

(4)将提出的问题分解为若干个子问题,借助多媒体课件来体现椭圆的定义的实质

在教学时,可以设置几个问题,让学生动手动脑,独立思考,自主探索,使学生根据提出的问题,利用多媒体,通过观察、实验、分析去寻找解决问题的途径。在椭圆的定义的教学过程()中,可以提出“到两定点的距离的和为定值的点的轨迹一定是椭圆吗”,让学生通过课件演示“改变焦距或定值”,观察轨迹的形状,从而挖掘出定义的内涵,这样就使得学生对椭圆的定义留下了深刻的印象。

(5)注意椭圆的定义与椭圆的标准方程的联系

在讲解椭圆的定义时,就要启发学生注意椭圆的图形特征,一般学生比较容易发现椭圆的对称性,这样在建立坐标系时,学生就比较容易选择适当的坐标系了,即使焦点在坐标轴上,对称中心是原点(此时不要过多的研究几何性质).虽然这时学生并不一定能说明白为什么这样选择坐标系,但在有了一定感性认识的基础上再讲解选择适当坐标系的一般原则,学生就较为容易接受,也向学生逐步渗透了坐标法.

(6)推导椭圆的标准方程时教师要注意化解难点,适时地补充根式化简的方法.

推导椭圆的标准方程时,由于列出的方程为两个跟式的和等于一个非零常数,化简时要进行两次平方,方程中字母超过三个,且次数高、项数多,教学时要注意化解难点,尽量不要把跟式化简的困难影响学生对椭圆的标准方程的推导过程的整体认识.通过具体的例子使学生循序渐进的解决带跟式的方程的化简,即:(1)方程中只有一个跟式时,需将它单独留在方程的一边,把其他各项移至另一边;(2)方程中有两个跟式时,需将它们放在方程的两边,并使其中一边只有一项.(为了避免二次平方运算)

(7)讲解了焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程,然后鼓励学生探索椭圆的两种标准方程的异同点,加深对椭圆的认识.

(8)在学习新知识的基础上要巩固旧知识

椭圆也是一种曲线,所以第七章所讲的曲线和方程的知识仍然使用,在推导椭圆的标准方程中要注意进一步巩固曲线和方程的概念.对于教材上在推出椭圆的标准方程后,并没有证明所求得的方程确是椭圆的方程,要注意向学生说明并不与前面所讲的曲线和方程的概念矛盾,而是由于椭圆方程的化简过程是等价变形,而证明过程较繁,所以教材没有要求也没有给出证明过程,但学生要注意并不是以后都不需要证明,注意只有方程的化简是等价变形的才可以不用证明,而实际上学生在遇到一些具体的题目时,还需要具体问题具体分析.

(9)要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神。

数学高二教案 篇2

一、教学内容

这学期按照教育局教研室的要求,教学任务比较重。选修1-1,第三章《导数》,根据教研室的计划,应该安排在春节前。鉴于期末考试临近,这一章没有学习,所以这学期的教学内容有以下几个部分:选修1-1《导数》,选修1-2,共四章《统计案例》,《推理与证明》,《数系的扩充与复数的引入》。

二、教学策略

根据年山东省高考数学(文科)大纲的要求,应及时调整教学计划,切实重视学生学习的实施,让学生的学习成为有效的劳动。精心备课,精心指导,针对目标学生不放松,努力使目标学生数学成绩有效,积极交流,提高教学水平,同时认真学习《框图》,学习新课程,应用新课程。

三、具体措施

这学期我主要从以下几个方面做好教学工作:

1、注重学习计划指导学习,善用好学案例。注重研究老师如何说话,就是注重研究学生如何学习。

2、尽量分层次做作业,尤其是加餐,提高尖子生的学习成绩。

3、特别注意学生作业的落实,不定时查看学生的集锦和作业本。

4、组织单位通过,做好试卷讲评工作。

5、积极沟通目标学生的想法和感受。

高二数学教案 篇3

教学目标

1、知识与技能

(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

(2)能熟练运用正弦函数的性质解题。

2、过程与方法

通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

教学重难点

重点:正弦函数的性质。

难点:正弦函数的性质应用。

教学工具

投影仪

教学过程

【创设情境,揭示课题】

同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

【探究新知】

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

(1)正弦函数的定义域是什么?

(2)正弦函数的值域是什么?

(3)它的最值情况如何?

(4)它的正负值区间如何分?

(5)?(x)=0的解集是多少?

师生一起归纳得出:

1.定义域:y=sinx的定义域为R

2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]

高二数学优秀教案5 篇4

高中数学教案:圆

教学目的:掌握圆的标准方程,并能解决与之有关的。问题

教学重点:圆的标准方程及有关运用

教学难点:标准方程的灵活运用

教学过程:

一、导入新课,探究标准方程

二、掌握知识,巩固练习

练习:⒈说出下列圆的方程

⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

⒉指出下列圆的圆心和半径

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

⒊判断3x-4y-10=0和x2+y2=4的位置关系

⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

三、引伸提高,讲解例题

例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

四、小结练习P771,2,3,4

五、作业P811,2,3,4

高二数学教案 篇5

简单的逻辑联结词

(一)教学目标

1.知识与技能目标:

(1) 掌握逻辑联结词且的含义

(2) 正确应用逻辑联结词且解决问题

(3) 掌握真值表并会应用真值表解决问题

2.过程与方法目标:

在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。

3.情感态度价值观目标:

激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。

(二)教学重点与难点

重点:通过数学实例,了解逻辑联结词且的含义,使学生能正确地表述相关数学内容。

难点:

1、正确理解命题Pq真假的规定和判定。

2、简洁、准确地表述命题Pq.

教具准备:与教材内容相关的资料。

教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的'培养。

(三)教学过程

学生探究过程:

1、引入

在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。

在数学中,有时会使用一些联结词,如且或非。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词且或非联结命题时的含义和用法。

为叙述简便,今后常用小写字母p,q,r,s,表示命题。(注意与上节学习命题的条件p与结论q的区别)

2、思考、分析

问题1:下列各组命题中,三个命题间有什么关系?

①12能被3整除;

②12能被4整除;

③12能被3整除且能被4整除。

学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词且联结得到的新命题。

问题2:以前我们有没有学习过象这样用联结词且联结的命题呢?你能否举一些例子?

例如:命题p:菱形的对角线相等且菱形的对角线互相平分。

3、归纳定义

一般地,用联结词且把命题p和命题q联结起来,就得到一个新命题,记作pq,读作p且q。

命题pq即命题p且q中的且字与下面命题中的且 字的含义相同吗?

若 xA且xB,则xB。

定义中的且字与命题中的且 字的含义是类似。但这里的逻辑联结词且与日常语言中的和,并且,以及,既又等相当,表明前后两者同时兼有,同时满足。说明:符号与开口都是向下。

注意:p且q命题中的p、q是两个命题,而原命题,逆命题,否命题,逆否命题中的p,q是一个命题的条件和结论两个部分。

4、命题pq的真假的规定

你能确定命题pq的真假吗?命题pq和命题p,q的真假之间有什么联系?

引导学生分析前面所举例子中命题p,q以及命题pq的真假性,概括出这三个命题的真假之间的关系的一般规律。

例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。

一般地,我们规定:

当p,q都是真命题时,pq是真命题;当p,q两个命题中有一个命题是假命题时,pq是假命题。

5、例题

例1:将下列命题用且联结成新命题pq的形式,并判断它们的真假。

(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。

(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;

(3)p:35是15的倍数,q:35是7的倍数。

解:(1)pq:平行四边形的对角线互相平分且平行四边形的对角线相等。也可简写成平行四边形的对角线互相平分且相等。

由于p是真命题,且q也是真命题,所以pq是真命题。

(2)pq:菱形的对角线互相垂直且菱形的对角线互相平分。 也可简写成菱形的对角线互相垂直且平分。

由于p是真命题,且q也是真命题,所以pq是真命题。

(3)pq:35是15的倍数且35是7的倍数。 也可简写成35是15的倍数且是7的倍数。

由于p是假命题, q是真命题,所以pq是假命题。

说明,在用且联结新命题时,如果简写,应注意保持命题的意思不变。

例2:用逻辑联结词且改写下列命题,并判断它们的真假。

(1)1既是奇数,又是素数;

(2)2是素数且3是素数;

6.巩固练习 :P20 练习第1 , 2题

7.教学反思

(1)掌握逻辑联结词且的含义

(2)正确应用逻辑联结词且解决问题

高二数学教案 篇6

教学目标:

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

教学重点:

体会直角坐标系的作用。

教学难点

能够建立适当的直角坐标系,解决数学问题。

授课类型:

新授课

教学模式:

启发、诱导发现教学。

教 具:

多媒体、实物投影仪

教学过程:

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴 它使直线上任一点P都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置

例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区。试问:埋设地下管线m的计划需要修改吗?

变式训练

1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程

2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程

例3 已知Q(a,b),分别按下列条件求出P 的坐标

(1)P是点Q 关于点M(m,n)的对称点

(2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)

变式训练

用两种以上的方法证明:三角形的三条高线交于一点。

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小 结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2. 利用平面直角坐标系解决相应的数学问题。

六、课后作业:

一键复制全文保存为WORD
相关文章