高二数学教案(人教版(优秀7篇)

作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。怎样写教案才更能起到其作用呢?以下是人见人爱的小编分享的高二数学教案(人教版(优秀7篇),希望大家可以喜欢并分享出去。

高二数学教案 篇1

学习目标:

1、了解本章的学习的内容以及学习思想方法

2、能叙述随机变量的定义

3、能说出随机变量与函数的关系,

4、能够把一个随机试验结果用随机变量表示

重点:能够把一个随机试验结果用随机变量表示

难点:随机事件概念的透彻理解及对随机变量引入目的的认识:

环节一:随机变量的定义

1、通过生活中的一些随机现象,能够概括出随机变量的定义

2能叙述随机变量的定义

3能说出随机变量与函数的区别与联系

一、阅读课本33页问题提出和分析理解,回答下列问题?

1、了解一个随机现象的规律具体指的是什么?

2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?

总结:

3、随机变量

(1)定义:

这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的

到的映射。

(2)表示:随机变量常用大写字母。等表示。

(3)随机变量与函数的区别与联系

函数随机变量

自变量

因变量

因变量的范围

相同点都是映射都是映射

环节二随机变量的应用

1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件

例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案。这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。

变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果

例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变

量,分别说明下列集合所代表的随机事件:

(1){X=0}(2){X=1}

(3){X0}

变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的随机试验的结果。

练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。

(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;

(2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的号码数;

小结(对标)

高二数学优秀教案 篇2

教学目标:

1、进一步理解和掌握数列的有关概念和性质;

2、在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;

3、进一步提高问题探究意识、知识应用意识和同伴合作意识。

教学重点:

问题的提出与解决

教学难点:

如何进行问题的探究

教学方法

启发探究式

教学过程:

问题:已知{an}是首项为1,公比为的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论?

研究方向提示:

1、数列{an}是一个等比数列,可以从等比数列角度来进行研究;

2、研究所给数列的项之间的关系;

3、研究所给数列的子数列;

4、研究所给数列能构造的新数列;

5、数列是一种特殊的函数,可以从函数性质角度来进行研究;

6、研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。

针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。

课堂小结:

1、研究一个数列可以从哪些方面提出问题并进行研究?

2、你最喜欢哪位同学的研究?为什么?

高二数学优秀教案 篇3

教学要求:理解曲线交点与方程组的解的关系,掌握直线与曲线位置关系的讨论,能熟练地求曲线交点。

教学重点:熟练地求交点。

教学过程:

一、复习准备:

1、直线A x+B +C =0与直线A x+B +C =0,

平行的充要条件是 ,相交的充要条件是 ;

重合的充要条件是 ,垂直的充要条件是 。

2、知识回顾:充分条件、必要条件、充要条件。

二、讲授新课:

1、教学例题:

①出示例:求直线=x+1截曲线= x 所得线段的中点坐标。

②由学生分析求解的思路→学生练→老师评讲

(联立方程组→消用韦达定理求x坐标→用直线方程求坐标)

③试求→订正→小结思路。→变题:求弦长

④出示例:当b为何值时,直线=x+b与曲线x + =4 分别 相交?相切? 相离?

⑤分析:三种位置关系与两曲线的交点情况有何关系?

⑥学生试求→订正→小结思路。

⑦讨论其它解法?

解二:用圆心到直线的距离求解;

解三:用数形结合法进行分析。

⑧讨论:两条曲线F (x,)=0与F (x,)=0相交的充要条件是什么?

如何判别直线Ax+B+C=0与曲线F(x,)=0的位置关系?

( 联立方程组后,一解时:相切或相交; 二解时:相交; 无解时:相离)

2、练习:

求过点(-2,- )且与抛物线= x 相切的直线方程。

三、巩固练习:

1、若两直线x+=3a,x-=a的交点在圆x + =5上,求a的值。

(答案:a=±1)

2、求直线=2x+3被曲线=x 截得的线段长。

3、课堂作业:书P72 3、4、10题。

高二数学教案 篇4

教学目标:

1、理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2、掌握坐标法解决几何问题的步骤;体会坐标系的作用。

教学重点:

体会直角坐标系的作用。

教学难点

能够建立适当的直角坐标系,解决数学问题。

授课类型:

新授课

教学模式:

启发、诱导发现教学。

教 具:

多媒体、实物投影仪

教学过程:

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴 它使直线上任一点P都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置

例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区。试问:埋设地下管线m的计划需要修改吗?

变式训练

1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程

2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程

例3 已知Q(a,b),分别按下列条件求出P 的坐标

(1)P是点Q 关于点M(m,n)的对称点

(2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)

变式训练

用两种以上的方法证明:三角形的三条高线交于一点。

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小 结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2、 利用平面直角坐标系解决相应的数学问题。

六、课后作业:

关于高二数学教案 篇5

教材分析:

三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

教案背景:

通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位。

教学方法:

以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。

教学目标:

借助单位圆探究诱导公式。

能正确运用诱导公式将任意角的三角函数化为锐角三角函数。

教学重点:

诱导公式(三)的推导及应用。

教学难点:

诱导公式的应用。

教学手段:

多媒体。

高二数学优秀教案 篇6

教学目标

1、知识与技能

(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

(2)能熟练运用正弦函数的性质解题。

2、过程与方法

通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

教学重难点

重点:正弦函数的性质。

难点:正弦函数的性质应用。

教学工具

投影仪

教学过程

【创设情境,揭示课题】

同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

【探究新知】

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

(1)正弦函数的定义域是什么?

(2)正弦函数的值域是什么?

(3)它的最值情况如何?

(4)它的正负值区间如何分?

(5)?(x)=0的解集是多少?

师生一起归纳得出:

1、定义域:y=sinx的定义域为R

2、值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]

课后小结

归纳整理,整体认识

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业:习题1—4第3、4、5、6、7题。

高二数学教案 篇7

平面向量共线的坐标表示

前提条件a=(x1,y1),b=(x2,y2),其中b≠0

结论当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线

[点睛](1)平面向量共线的坐标表示还可以写成x1x2=y1y2(x2≠0,y2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;

(2)当a≠0,b=0时,a∥b,此时x1y2-x2y1=0也成立,即对任意向量a,b都有:x1y2-x2y1=0?a∥b.

[小试身手]

1、判断下列命题是否正确。(正确的打“√”,错误的打“×”)

(1)已知a=(x1,y1),b=(x2,y2),若a∥b,则必有x1y2=x2y1.()

(2)向量(2,3)与向量(-4,-6)反向。()

答案:(1)√(2)√

2、若向量a=(1,2),b=(2,3),则与a+b共线的向量可以是()

A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)

答案:C

3、已知a=(1,2),b=(x,4),若a∥b,则x等于()

A.-12B.12C.-2D.2

答案:D

4、已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在x轴上,则点B的坐标为________.

答案:73,0

向量共线的判定

[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),则λ的值等于()

A.12B.13C.1D.2

(2)已知A(2,1),B(0,4),C(1,3),D(5,-3)。判断与是否共线?如果共线,它们的方向相同还是相反?

[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.

法二:假设a,b不共线,则由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),从而1=2μ,2=-2μ,方程组显然无解,即a+2b与2a-2b不共线,这与(a+2b)∥(2a-2b)矛盾,从而假设不成立,故应有a,b共线,所以1λ=21,即λ=12.

[答案]A

(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),

∵(-2)×(-6)-3×4=0,∴,共线。

又=-2,∴,方向相反。

综上,与共线且方向相反。

向量共线的判定方法

(1)利用向量共线定理,由a=λb(b≠0)推出a∥b.

(2)利用向量共线的坐标表达式x1y2-x2y1=0直接求解。

[活学活用]

已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行,平行时它们的方向相同还是相反?

解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),

a-3b=(1,2)-3(-3,2)=(10,-4),

若ka+b与a-3b平行,则-4(k-3)-10(2k+2)=0,

解得k=-13,此时ka+b=-13a+b=-13(a-3b),故ka+b与a-3b反向。

∴k=-13时,ka+b与a-3b平行且方向相反。

三点共线问题

[典例](1)已知=(3,4),=(7,12),=(9,16),求证:A,B,C三点共线;

(2)设向量=(k,12),=(4,5),=(10,k),当k为何值时,A,B,C三点

共线?

[解](1)证明:∵=-=(4,8),

=-=(6,12),

∴=32,即与共线。

又∵与有公共点A,∴A,B,C三点共线。

(2)若A,B,C三点共线,则,共线,

∵=-=(4-k,-7),

=-=(10-k,k-12),

∴(4-k)(k-12)+7(10-k)=0.

解得k=-2或k=11.

有关三点共线问题的解题策略

(1)要判断A,B,C三点是否共线,一般是看与,或与,或与是否共线,若共线,则A,B,C三点共线;

(2)使用A,B,C三点共线这一条件建立方程求参数时,利用=λ,或=λ,或=λ都是可以的,但原则上要少用含未知数的表达式。

一键复制全文保存为WORD
相关文章