在现实社会中,课堂教学是我们的任务之一,所谓反思就是能够迅速从一个场景和事态中抽身出来,看自己在前一个场景和事态中自己的表现。那么大家知道正规的反思怎么写吗?
教学目标:
1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题
2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。
3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。
教学重点:
掌握梯形面积的计算公式,并会用公式解决实际问题。
教学难点:
理解梯形面积公式推导方法的多样化,体会转化的思想。
考点分析:
会用梯形面积公式解决实际问题。
教学方法:
游戏引入——新知讲授——巩固总结——练习提高
教学用具:
课件、多组两个完全相同的梯形。
教学过程:
一、提出问题(课件出示教材第95页的主题图)。
教师:同学们在图中发现了什么?
教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?
二、通过旧知迁移引出新课。
教师:同学们还记得平行四边形和三角形的面积怎么求吗?
1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。
2、课件出示平行四边形面积、及三角形面积公式推导的过程,教师揭示转化方法:拼合法、割补法
3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?
三、揭示课题;
根据学生的回答,引出新课,梯形的面积。
板书课题--梯形的面积。
四、新知探究
1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。
2、请同学们打开学具袋,看看里面的梯形有什么特点?
生:各种梯形,每种两个,每种梯形颜色一样。
教师提出要求
①选择自己喜欢的梯形把它拼成我们学过的图形
②想一想,拼成怎样的图形,利用怎样的方法拼成的?
③它们的高与梯形的高有怎样的关系,它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?
④先独立思考后小组交流
生小组合作探究。师巡视指导,引导学生注意把转化前后图形各部分之间的关系找准。
3、(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示。)
师引导得出如下几种推导思路:(师边利用课件演示边讲解)
思路一:用两个完全一样的梯形拼成一个平行四边形,得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出
梯形面积=(上底+下底)×高÷2
思路二:把梯形剪成一个平行四边形与一个三角形,梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出
梯形的面积 =上底×高+(下底-上底)×高÷2
=(上底+下底)×高÷2
思路三:沿梯形的一条对角线剪开,把梯形分割成两个三角形。得出梯形的面积等于两个三角形面积之和,从而推出
梯形的面积 =上底×高÷2+下底×高÷2
=(上底+下底)×高÷2
教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”。
师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?学生用字母表示出梯形的面积计算公式:S=(a+b)h÷2
五、巩固提升
1、(出示课件),三峡水电站全景图及第89页例3并读题。同时出示水电站的横截面的简图(梯形)。提问,实际求什么?
S =(a+b)h÷2
=(36+120)×135÷2
=156×135÷2
=10530(㎡)
2、计算下面图形的面积,你发现了什么?
六、总结结课
1、这节课你学到了什么?要计算梯形的面积,必须要知道几个条件?还要注意什么?
2、我们是怎样得出梯形面积的公式的?
(二)教师总结
今天我们利用转化的思想推导出了梯形的面积计算公式,并会用梯形的面积计算公式解决生活中的实际问题。
课时目标
知识与技能:在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力。
过程与方法:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。
情感、态度与价值观:渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣。
教学准备
师:多媒体、完全一样的梯形若干个。
生:剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形等)、练习本。
重点难点:自主探究梯形的面积公式。理解并掌握梯形的面积公式,会计算梯形的面积。
教学过程
一、问(目标引领问题导学)
1.导入:这一单元我们已经学习了三角形和平行四边形的面积计算,谁来说一说它们的计算公式?(平行四边形的面积=底×高,用字母表示是S=ah;三角形面积=底×高÷2,用字母表示是S=ah÷2。)
让学生回忆它们的面积的计算方法是怎么推导出来的?
(把它转化成已经学过的图形来研究面积的。)
2.揭题:生活中的图形除了三角形和平行四边形外,还有梯形,这节课我们就利用转化的方法来研究梯形的面积计算公式。(板书课题:梯形的面积)
二、猜(读)(联系旧知自主尝试)
1.出示教材第95页情境图。引导学生观察:车窗玻璃是什么形状的?(梯形)
思考:怎样求出它的面积呢?你能用学过的方法推导出梯形的面积计算公式吗?
小组讨论,学生可能会猜测到把梯形转化成平行四边形、三角形、长方形等,来推导它的面积计算公式。
2.让学生利用梯形学具验证自己的猜测。
小组活动,教师深入各小组进行指导。可提醒学生用剪刀剪一剪,再拼一拼。
3.交流汇报自己的推导过程,指学生到黑板边演示边讲解。
三、探(合作探究点拨辅导)
学生以梯形面积计算的公式推导有多种方法,可能会这样做:
(1)用两个一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的(上底下底),这个平行四边形的高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半,所以梯形的面积=(上底下底)×高÷2。
出示推导过程:
(2)把一个梯形剪成两个三角形。
梯形的面积=三角形1的面积三角形2的面积=梯形上底×高÷2梯形下底×高÷2=(梯形上底梯形下底)×高÷2
出示推导过程:
(3)把一个梯形剪成一个平行四边形和一个三角形。
梯形的面积=平行四边形面积三角形面积
=平行四边形的底×高三角形的底×高÷2
=(平行四边形的底三角形的底÷2)×高
=(平行四边形的底×2三角形的底÷2×2)×高÷2
=(平行四边形的底平行四边形的底三角形的底)×高÷2
因为梯形的上底=平行四边形的底,梯形的下底=平行四边形的底三角形的底,所以梯形的面积=(上底下底)×高÷2。
1.小结:大家都是把梯形转化成我们学过的图形,推导出它的面积计算方法,无论哪种方法我们都可以推导出梯形的面积计算公式。
板书:梯形的面积=(上底下底)×高÷2用字母表示:S=(a b)×h÷2
2.教学教材第96页例3。
出示教材第96页例3情境图和横截面的示意图,引导学生观察情境图并思考:横截面是一个什么形状?(这是一个梯形;而且有两个角是直角,是一个直角梯形。)
让学生找一找,直角梯形的高在哪里?你能理解这个横截面的含义吗?
通过交流,学生能明白:直角梯形的高也是它的一个腰长。这个梯形的上底是36米,下底是120米,高是135米。
你能利用所学的知识计算一下这个直角梯形的面积吗?
让学生尝试计算,并交流汇报。
根据学生的汇报,板书计算过程:(见板书设计)
四、用(训练推进拓展延伸)
1.完成教材第96页“做一做”。先说一说这是一个什么图形,并对该图进行分析。
学生可以把它看成一个大梯形,梯形的上底是(40 45) cm,下底是(71 65) cm,高是40cm,也可以看成两个直角梯形,其中一个梯形的上底是40cm,下底是7lcm,另一个梯形的上底是45cm,下底是65cm,高都是40cm,算出两个梯形的面积再加起来。
2.完成教材第97页“练习二十一”第3题。
本题需要先测量计算所需条件的长度,再利用梯形面积计算公式求面积。
3.完成教材第97页“练习二十一”第4题。先让学生观察飞机模型的机翼是什么形状,(是两个完全相同的梯形)再让学生说一说怎样求机翼的面积。求机翼的面积,可以先求出一个梯形的面积,再乘2;也可以根据梯形面积公式的推导经验,设想把两个梯形拼成一个底长lOOmm 48mm,高250mm的平行四边形,求出它的面积。
教学反思:
通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。
教学内容:人教版义务教育课程标准实验教科书《小学数学》五年级上册第88-89页
教学目标:
1.通过学习,学生理解、掌握梯形面积的计算公式,并会运用。
2.学生在梯形面积计算公式的推导过程中,发展空间观念,领悟转化思想,感受事物之间是密切联系的。
3.学生在探究中思考,在思考中发展,在发展中快乐,体验到数学是有趣的、有用的、是美的,激起学习数学的兴趣和自觉性。
课前准备:给每个小组准备两个完全一样的梯形、直角梯形、等腰梯形各一对,并用信封装好,剪刀一把。
教学过程
一、 创设情境,导入新课
师:我们的校园很美,现在学校准备在小操场上种上草皮进一步绿化、美化我们校园,(师出示一个近似梯形的地),这块地的形状是什么图形?现在要铺好这样一块地,学校至少要买多少草皮,就是算这块地的什么?怎样求梯形面积呢?这就是今天我们要研究的内容。
(设计意图:《数学课程标准》提出:学生数学学习的内容应当是现实的、有意义的、富有挑战性的。这里创设一个学生熟悉的情境,让学生感受到数学就在身边,学习数学是有意义的,增强学生学习数学的内在动力。)
二、 猜测验证,自主探究
1.公式猜想
师:同学们,前一段时间我们刚掌握了哪些图形的面积计算?
引导学生得出:已学过了三角形、平行四边形的面积计算
师:平行四边形的面积计算公式,我们是怎样推导出来的?三角形的面积计算公式,我们又是怎样推导出来的?
学生回答,教师出示多媒体课件,演示平行四边形与三角形的面积推导过程。
师:我们在推导这两个图形面积计算公式时,有什么共同点。(都是运用转化法,把未知化为已知)
师:这种方法很重要,我们在解决很多问题的时候都是利用已有的知识去解决新问题,对于梯形的面积如何计算,同学们也可大胆地猜想一下,梯形可能转化成哪个我们已学过的图形呢?
生猜想(教师根据学生回答相机写出图形)。
(设计意图:通过对平行四边形与三角形面积计算公式推导过程的回顾,为学生推导梯形面积计算公式作了有效思维策略的铺垫。让学生对梯形如何转化进行猜想,培养了学生的直觉思维和探究意识。)
2.公式探究
师:同学们对梯形转化成什么,都作了自己的大胆猜想,但光有猜想是不够的,只有猜想就是幻想,所以我们还要对自己的猜想进行探索,通过事实来说明你的猜想是合理、正确的。现在同学们就开始对自己的猜想进行探索,这里老师提几个探索要求:
教师出示:探究要求:
(1)把信封袋中的梯形转化成已学过的图形。
(2)认真观察,发现梯形与拼成的图形在面积、边的长度上有什么关系?
(3)尝试从拼成的图形面积计算公式推导梯形面积的计算公式。
学生进行探究,教师进行相机指导。
探究后,学生汇报推导,教师引导得出如下几种推导思路:
思路一:用两个完全一样的梯形拼成一个平行四边形(如下图),得出拼成的平行四边形的面积是梯形面积的2倍,平行四边形的高与梯形的高相等,平行边四边形的底等于梯形的上底与下底之和,从而推出梯形面积=(上底+下底)×高÷2
思路二:把梯形剪成两个三个角形(如下图),得出梯形的面积等于两个三角形面积之和,从而推出梯形的面积=上底×高÷2+下底×高÷2
思路三:把梯形剪成一个平行四边形与一个三角形(如下图),梯形的面积等于一个平行四边形面积与一个三角形面积之和,从而推出梯形的面积=上底×高+(下底-上底)×高÷2。
教师引导学生对以上的推导结果进行比较,最后得出“梯形面积=(上底+下底)×高÷2”这个公式更简明易记。
师:如果上底用字a来表示,下底用b来表示,高用h来表示,那么梯形面积公式用字母公式可表示为什么?
师:现在同学们翻开课本88-89页,阅读一下课文,并把文中的空填完整。
(设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在这个环节中,教师放手让学生去实践、去探索,学生在探索梯形面积的过程中,不仅掌握了梯形的面积计算公式,理解梯形面积计算公式的由来,更有力地促进了学生思维能力的发展和问题解决策略意识的形成。)
三、 实践运用,体验生活
1.火眼金睛我能辨
(1)梯形面积是平行四边形面积的一半。
(2) 两个完全相同的直角梯形可以拼成一个长方形。
(3)一个梯形的上底是10cm,下底是20cm,高是10cm,它的面积是300平方厘米。
2.生活运用我能行
(1)完成课本89页做一做
(2)师:课前学校留给大家的问题还没有解决,现在我们来解决它。(师再次出示近似梯形的地)要求这块地的面积要知道什么条件?(要知道上底、下底、高各是多少)
教师出示上底16m、下底12m、高2m,学生进行计算。最后得出这块地的面积。
(设计意图:设计形式多样、层次分明、重点突出的习题,一是让学生对新知识起到巩固的作用;二是注重激发学生练习的兴趣,同时解决课始提出的问题,让学生体验到数学价值,增进学生学好数学的信心,从而主动参与学习。)
四、 评价总结,延伸拓展
师:通过学习你有什么收获?是如何学习的,还有什么问题?
(设计意图:让学生回顾学习过程,再一次体验学习经历,这个过程是学生对所学知识进行系统化、条理化的过程,不仅促进学生掌握了知识、领悟了方法,还培养了学生的语言表达能力,归纳概括能力,关注了学生情感的体验。)
五、 作业布置
1.p90,1—4。
2.梯形面积计算公式的推导过程除了同学们在课堂上汇报的几种外,还有其它的推导形式,同学们如果有兴趣可以进一步研究。
3.梯形的面积计算公式与平行四边形、三角形、长方形的面积计算公式有着密切的关系,而且这些图形的面积计算公式都可以用梯形的面积计算公式来表示,同学们找找看是怎样的关系。
附板书设计:
本课内容:
课本第14页至第15页例题6、例7及“试一试”、“练一练”
本课设计:
一、复习旧知、导入新课
二、自主探索、获得新知
三、巩固练习、学以致用
关于第二个环节的反思。
课前我让学生先将课本第117页四组梯形剪下,并且逐一标上数字,课堂上做这道题时我直接让学生拿出事先准备好的图形,分组动手操作并填写表格,然后讨论表格后的讨论题。设计教案时,本以为图形已经标号分组,学生操作分析时应该不会有问题,但实际操作时,仍然有各种各样的问题,主要有:
1、将两个完全相同的梯形转化成一个平行四边形的操作比较生疏;
2、仍然有学生填写顺序出现错误;
3、转化后的梯形数据分析有误;
4、小组活动秩序混乱。
5、回答讨论题时仍有困难。
现在回想起来,如果备课时能够预想到这些情况,那么课堂上这些错误都是可以避免的。我可以在讲授例题6时,借助事先准备好的。图形,向学生演示怎样将两个完全相同的梯形转化成一个梯形,并让学生模仿操作,而不是仅仅让学生观看课件里的动画演示。在学生操作例题7时,我可以先向学生分别展示各组图形以便学生对号入座,而不是全完放手让学生自己操作。在解决讨论题时,我可以带领学生结合图形来分析数据,回答问题。如果我能这样安排的话,课堂纪律应该更好一些,教学效果也可以更好。
当然本节课的教学,还存在着其他方面的不足,例如课堂上仍然是以教师为主,教师说的过多,学生处于被动地位。以后我将积极去听师傅董雯雯老师的课,多听多问多请教,多多吸取前辈的宝贵经验。
一、教学目标
1、在实际情境中,认识计算梯形面积的必要性。
2、引导学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,能灵活运用梯形面积计算公式解决相关的数学问题。
3、结合数学“再创造”过程,培养学生观察、操作、比较等逻辑思维能力与初步的科学探究能力。
4、通过小组合作学习,培养学生合作学习的能力。
二、教材分析
“梯形的面积”是在学生认识了梯形特征,掌握平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。
三、教学设计
(一)复习准备
1、复习旧知,铺垫引导
师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?
生:转化成平行四边形。
(在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)
(点评:通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。)
师:同学们对前面的知识掌握的真不错。
(二)新知探索
(一)呈现实际情境,感受计算梯形面积的必要性
师:这里有一个灌溉堤坝的横截面如下图,它的面积是多少?
师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)
师:� 那么到底该怎样计算它的面积呢?我有个建议,发挥小组的'力量,共同合作探究。
(点评:启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望,又使学生明确了探索目标与方向。)
(二)提供材料,自主探究图形的转化过程
1、提出小组合作的要求
师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下:
a、利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。
b、把你的方法与小组成员进行交流,共同验证。
C、选择合适的方法交流汇报。
2、自主探究,合作学习
(学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)
3、全班汇报交流
师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。
生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。
(学生边动手演示,边说转化过程,见下图。)
生2:我们小组是把梯形沿两腰中点剪开,变成两个小梯形,再转化成平行四边形。
生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。
(三)探索、归纳梯形的面积计算公式
师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?
生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。
生:梯形的面积是所拼平行四边形面积的一半。
生:梯形的面积=(上底+下底)×高÷2
(教师板书梯形面积计算公式)
师:一个梯形的面积为什么要除以2?
生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。
师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。
师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?
板书:S=(a+b)h÷2
(学生在得出梯形面积的计算公式后,安排计算堤坝横截面的面积)
(点评:这部分内容是这一节课的重点,也是难点。在激发起了学生的探究欲望后,采用了小组合作学习这种方式,让他们主动探究、大胆猜测、积极验证的教学方法。使学生在数学学习活动中相互合作,主动探索,真正处于课堂教学的主体地位,把新知识转化为旧知识。新知、旧知有机的融为一体,让学生通过实际操作来推导出梯形的面积计算公式并运用公式进行计算,整个过程都由学生自己来完成,使学生从中体验到了成功的喜悦。)
(三)联系实际,巩固运用
1、试一试
引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积
(1)出示篮球场的罚球区图形,请计算出罚球区的面积。
(2)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?
2、练一练第1、2、3题,让学生独立完成。
3、思考题
我们经常见到圆木,钢管等堆成下图的形状(了示课本第28页第4题),求图中圆木的总根数,你有几种解答方法?
(四)课堂小结
通过今天课堂上的学习,谈谈你的收获。
教学内容:
人教版小学数学教材五年级上册第95页主题图、96页例3、第96页做一做,教学目标:
1、知识与技能:通过观察、猜想、操作等数学活动,推导出梯形的面积计算公式。发展空间观念和推理能力渗透转化的数学思想方法。并能进一步体会利用转化的方法解决问题
2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。
3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。
教学重点:
掌握梯形面积的计算公式,并会用公式解决实际问题。
教学难点:
理解梯形面积公式推导方法的多样化,体会转化的思想。
考点分析:
会用梯形面积公式解决实际问题。
教学方法:
游戏引入新知讲授巩固总结练习提高
教学用具:
课件、多组两个完全相同的梯形。
教学过程:
一、提出问题(课件出示教材第95页的主题图)。
教师:同学们在图中发现了什么?
教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?
二、通过旧知迁移引出新课。
教师:同学们还记得平行四边形和三角形的面积怎么求吗?
1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。
2、课件出示平行四边形面积、及三角形面积公式推导的`过程,教师揭示转化方法:拼合法、割补法
3、教师:前面我们学习了平行四边形的面积,又学习了三角形的面积,请同学们想一想,我们能用学过的方法推导出梯形的面积计算公式吗?
三、揭示课题;
根据学生的回答,引出新课,梯形的面积。
板书课题--梯形的面积。
四、新知探究
1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。
2、请同学们打开学具袋,看看里面的梯形有什么特点?
[教学目标]
1、利用迁移规律,鼓励学生运用学具进行自主探究,推导出梯形的面积公式。
2、通过学生动手操作和观察、比较、分析、和概括,自主得出梯形的面积公式,发展学生的空间观念。
3、培养学生运用“转化”的思想解决问题的能力,培养学生团结协作、勇于创新的精神,使学生获得成功的体验。
[教学重点、难点]
通过学生发现梯形与已知图形的联系,自主探究梯形面积计算公式的推导过程。发现梯形与已知图形的联系,引导学生自主体验梯形面积计算公式的推导过程。
[教学准备]
一体机配合教学
[教学过程]
一、谈话导入,以旧引新
师:今天老师想带同学们到老师家里去看看,想去吗?这是老师家里小区的照片,漂亮吗?再来看看这是老师家里的照片,怎么样?
师:你们能从中找到我们学过的基本图形吗?
生:长方形,正方形,平行四边形,三角形和梯形。
师:你还记得这些平面图形的面积公式吗?
师:真不错,看来同学们对于学过的`知识掌握得非常扎实,现在只有这个梯形的面积不知道了,这节课我们就一起来研究一下梯形的面积。
二、迁移过渡,回顾方法
师:同学们,还记得平行四边形的面积和三角形的面积是怎么推导出来的吗?
师:先来说一说平行四边形。(学生汇报,教师操作)
教学内容:梯形面积计算公式的推导。(课本80-81页)练习十九第1-4。
教学目标:理解和掌握梯形面积公式,并能运用梯形的面积公式正确地计算梯形的面积。
通过实际操作,掌握梯形面积公式的推导过程,理解公式的来源。
教具准备:三个大小完全一样的梯形。
教学过程:
一、复习:
⒈平行四边形的面积公式是什么?
⒉三角形的面积公式是什么?它是通过怎样的转换推导出来的?为什么要÷2?
⒊求下列图形的面积(只列式)
⑴已知平行四边形的底3米,高2.4米,求面积。
⑵已知三角形的底2.5米,高0.8米,求它的面积。
二、新授
⒈、问题导入。
左图是一个梯形。它的上底3厘米,下底5厘米,高是4厘米,想一想:你能依照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它面积吗?
板书课题:梯形面积的。计算
⒉、指导操作实验,推导梯形面积公式。
⑴拿出两个完全相同的梯形看课本第80页图示,按照与三角形转化类似的方法旋转平移。
指导:①把两个完全相同的梯形重叠。②怎样旋转上面一个梯形?③再怎样移动?
按①重合②旋转③平移的步骤边设问、边操作,指名口述。
⑵观察分析。
A.拼成的是什么图形?这个图形的面积与原梯形的面积是什么关系?为什么有这种倍数关系存在?
B.深入比较:
①拼成的平行四边形的底跟原梯形的两底是什么关系?
②平行四边形的高与原梯形的高又是什么关系?
导出公式:
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
⑶自我梳理:
①填写教材80页中横线上的内容。
②联系三角形的面积公式,分析理解:为什么两个公式都有一个÷2?
③全班齐记公式两遍,计算前面的问题,把计算过程填写在课本上。
⒊、引导学生用字母公式表示梯形的面积公式。
S=(a+b)h÷2
三、巩固练习
⒈、求梯形的面积:
①上底13米,下底15米,高4米。
②上底13分米,下底2.7米,高1.5米。
③上底25米,下底14.5米,与两底垂直的一腰10米。
⒉、完成做一做中的二小题。
⒊、练习十九第4题。
四、总结
⒈、这节课又解决了什么新问题?
⒉、梯形的面积公式是什么?与三角形比较,有什么共性?解题时要特别注意什么?
五、作业
练习十九第1、2、3题
六、板书设计:
梯形面积的计算
在学生独立思考,自主探究的基础上,组织学生进行合作交流,这是本节课的重点环节。在教学中,我放手让学生从自己的思维实际出发给学生充分的思考时间,对问题进行独立探索、讨论、交流,学生充发展示自己或正确或错误的思维过程。在合作交流中互相启发,共同发展。在此过程中,我只是组织者、指导者,起到了帮助和促进的作用,充分发挥学生的主动性,积极性和首创精神,最终达到使学生有效的实现对当前所学知识的意义建构的目的。
1、以学生自主学
考虑到学生已有了平行四边形、三角形面积计算公式推导方法的经验,本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。为学生创设一种“猜想”的学习情景,让学生凭借已有经验大胆猜想,进而是实践检验猜想成为学生自身的需要,使运用科学探究的方法进行探究学 这比起盲目的乱猜来,更能激起学生的探究欲,学生的思维更有深度。
2、以学生的活动为主。实现生生互动。
本节课力求让学生自己去发现和概括梯形的'面积公式。使学生在分析,对比中归纳选优;在探究的过程中发展学生思维的创造性。为了达到这一目的,让学生动手操作,分组合作探究,初步概括出梯形的面积公式。这样,通过“拼、说”的活动过程,让学生在活动中发现,活动中体验,活动中发散,活动中发展。同时,又由于各项活动的设计环环相扣,步步深入,不仅激发了学生探究学习的兴趣,同时学生思维深度和广度也得到了有效的培养。
3、使学生的自主探索在时间上给以保证
本节课一系列活动的设计为了学生充足地用眼看,用手做,用耳听,用嘴说,用脑想的时间和空间,让学生尽情的表现,发展自己,每一位学生都在亲自实践中认识理解了新知。充分体现了教师指导者,参与者的作用。当学生受现有知识的制约,推导概括公式思维停滞时,教师实施点拨诱导,促其思维顺畅,变通,最后使学生明确,尽管拼摆的方法不同,但都达到验证了梯形的面积公式。将发散与收敛,直觉和逻辑这种对立统一的思维方式有机的融为主体动态式的思维结构,从而最大限度的扩展其具有张力的思维空间。
教学目标:
1、在平行四边形、三角形面积推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。
2、会正确、较熟练的运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力;。
3、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,发展学生的空间观念。
4、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
教学重点:
理解并掌握梯形面积公式,会计算梯形的面积。
教学难点:
自主探究梯形面积公式。
教具准备:
CAI、完全一样的梯形若干个。
学具准备:
每生准备两个完全一样的梯形。(有等腰、直角、一般)
课前预习:
梯形各部分、直角梯形、等腰梯形、平行四边形面积、三角形面积、渗透梯形方法、(你能不能把梯形转化成前面学过的图形,需要用笔直尺、画一画。)小组合作大胆交流、每人都要说自己的想法。直到老师说做好为止。
课前准备:
谁来介绍你们的姓名、年龄、学校、爱好等等,让大家都来了解你。
我们先介绍这,我相信同学们在课堂上的表现一定会让所有的老师都记住你。
教学过程:
一、创设情境,激发兴趣。
(出示情境图)。
谈话:同学们,今天李老师和你们一起来参观王伯伯的甲鱼池,请仔细观察,你能发现哪些数学信息?
生:1号甲鱼池的形状是梯形的,每平方米放养甲鱼苗200只。
师:根据发现,你能提出什么数学问题?
学生观察情境图,提出问题。
生:1号甲鱼池的面积有多大?
师:你提的问题很好,同学们想不想知道。谁还能提出什么问题?
生:1号甲鱼池能放养多少甲鱼苗?
二、自主探究梯形的面积计算方法。
1.教师:刚才同学们提的问题都很有价值。(课件)我们来看这两个问题。要求1号甲鱼池的面积,也就是求什么图形的面积?
生:梯形。
师:你会求这个梯形的面积吗?那么怎样求梯形的面积呢?这节课我们就一起来探究梯形的面积。板书课题:梯形的面积。
教师:如果我用这个梯形纸片代表甲鱼池的面积,想一想,你能用什么办法求出这个梯形纸片的面积?请你先独立思考,然后在小组内交流一下你的方法。
2.小组讨论交流,教师巡视了解。
3.展示、汇报交流。
师:哪个小组先来说说你们的方法。拿着你的梯形到前面来说给同学听一听。
生1:(方法1)——把梯形分成平行四边形和三角形,分别计算出它们的面积,再求出它们的面积和。
师:你觉得这个方法行吗?大家看,这个小组的方法是把梯形分割成平行四边形和三角形来求,谁是这样想的?
师:谁有不同的方法?
生2:(方法2)——把梯形分成两个三角形,求出每个三角形的面积,再计算出它们的面积和。
师:你这个方法也挺好。这个小组是把梯形分割成两个三角形来求梯形面积,真是些爱动脑筋的好孩子。和他方法一样的同学请举手。谁的方法和他们都不一样?
生3:(方法3)——把两个完全一样的梯形拼在一起,拼成一个平行四边形,这个梯形是平行四边形面积的一半。平行四边形的面积等于底乘高再除以2就是梯形的面积。
师:这个同学说的太好了。大家认为这个方法好不好?
这个同学的方法是把两个完全一样的梯形拼成一个平行四边形,平行四边形的面积等于底乘高,这个底是谁的底?高呢
生:平行四边形的底,平行四边形的高。
师:平行四边形的面积等于底乘高再除以2就是梯形的面积。
师:大家看,这位同学用了这样两个完全一样的梯形拼成一个平行四边形。是不是任意两个完全一样的梯形都能拼成一个平行四边形?
师:大家用手中的梯形拼一拼,谁再上来拼一拼,再说给同学们听听。
师:看来任意两个完全一样的梯形都能拼成一个平行四边形。每个梯形的面积就是平行四边形面积一半。大家理解这个方法了吗?还有不同的吗?
生4(方法四):我用两个完全一样的直角梯形拼成了长方形,一个梯形的面积就是这个长方形面积的一半。
师:这个方法是不是所有的两个完全一样的梯形都可以用。
生:是两个直角梯形。
师汇总:对,刚才同学们想出了这些方法来求梯形面积,你们真了不起。下面我们来看这些方法。(课件演示)
第一种是把梯形分割成一个三角形和一个平行四边形;
第二种是把梯形分割成两个三角形;
第三种把两个完全一样的梯形拼成了一个平行四边形。
表扬:这三种方法都是把梯形转化成已学过的图形来解决。同学们能够运用转化的方法,你们真的很棒。这种方法很重要,在以后的学习中我们会经常用到。
我们前面学过的长方形、正方形、平行四边形、三角形都有自己的面积计算公式,那么梯形也有自己的面积计算公式。
师:大家先来猜想。�
师:梯形的面积到底与它们有什么关系呢?你们想不想研究?
三、探究操作,推导出梯形面积公式
(一)出示问题,明确目标
我们首先来看这三种方法,根据我们现有水平,由于前两种方法对我们来说研究起来确实有困难,下面我们就采用第3种方法来深入研究梯形的面积。
(点课件)大家一起来看这种方法,同学们用两个完全一样的梯形拼成平行四边形,梯形的面积等于拼成平行四边形面积的一半。
师板书:两个完全一样的梯形拼成平行四边形
梯形的面积=拼成平行四边形面积÷2 =底×高÷2。
拼成平行四边形的底会与梯形的上底、下底有什么关系?拼成平行四边形的高和梯形的高又有什么关系?根据这些关系,你能推导出梯形面积计算方法吗?
师:下面就请同学们用手中的梯形拼一拼,想一想,怎样推导梯形面积计算公式。请同学们在小组内研究研究。
(二)自主探究
合作学习
小组内讨论交流。
学生分组动手操作,教师巡视指导。
教师参与到每个小组中进行讨论和指导,以便发现和收集信息。
(三)成果交流,质疑解难
1.全班展示回报
师:哪个小组的同学说一说你们小组是怎么研究的?拿着你手中的纸片到前面跟同学说一下。
生:两个完全一样的梯形拼成一个平行四边形,梯形的面积是平行四边形面积的一半。平行四边形的底就是梯形的(上底+下底),平行四边形的高就是梯形的高。推导出梯形的面积公式就是梯形的(上底+下底)乘高除以2。
师表扬:这个小组研究的非常好,推导出梯形面积计算方法。大家听明白了吗?
师:你们也是这样想的吗?哪个小组再来说说你们的做法?
2. 师:刚才同学们经过研究,推导出梯形面积计算方法。下面我们一起来回顾梯形面积的推导过程。(课件演示转化过程)
梯形面积=平行四边形面积÷2 梯形面积=底×高÷2 师:拼成的平行四边形的底是梯形的上底与下底的和,平行四边形的高与梯形的高相等,就是(上底+下底)×高÷2
师:这样我们就得到了梯形的面积公式是梯形面积=(上底+下底)×高÷2
3.师:通过研究,我们发现拼成的平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,谁再来说说梯形面积计算方法是什么?生说师板书。
板书面积公式:梯形的面积=(上底+下底)×高÷2。
提问:(上底+下底)×高算的是什么?为何要除以2?。
4.学习字母表达式
谈话:谁能用字母表示?说说每个字母分别表示什么?
师:S=(a+ b )×h ÷2(板书)
四、运用知识,解决情景问题。
师:这节课同学们研究了怎样求梯形的面积。推导出求梯形面积计算公式,现在我们就运用所学知识来解决前面提出的两个问题:1号甲鱼池的面积是多少?能放养多少只甲鱼苗?(课件出示题目)
请学生做在练习本上。两名学生板演,其余学生独立练习。全班交流。
五、随堂检测,巩固目标。
师:看来同学们会运用梯形面积计算方法解决实际问题。接下来我们要向自己挑战,有没有信心。
挑战自我:
一、判断
1、两个梯形就可以拼成平行四边形。()
2、梯形的面积一定比平行四边形的面积小。()
3、在下图中平行四边形的面积是梯形面积的2倍。()
师:同学们判断的很好,理解问题很透彻,希望同学们向更高的目标挑战。下面看看实际生活中的梯形,你能计算出他们的面积吗?
二、(挑战自我)
解决问题
1、学校操场要建一个梯形指挥台,平面是梯形,上底是5米,下底8米,高6米,
这个梯形台的平面是多少平方米?
2、一块梯形的墙,上底15米,下底比上底多5米,高是6米,这块墙的面积是多少平方米?
3、一个梯形,上底和下底的和是36cm,高12cm,它的面积是多少?
师:显示我们聪明才智的机会到了,请同学们大显身手。
4、王大爷用50米长的篱笆靠墙围了一个羊圈(如图)。求这个梯形羊圈的面积。
学生独立练习,全班交流。
六、小结。
通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形面积公式。能灵活运用知识解决问题,通过这节课的学习你有哪些收获?
同学们收获这么多,� 向在座的老师说再见。
一、复习准备,数学教案-梯形的面积计算。
1、出示平行四边形图。
2、提问:这是什么图形?知道底和高会求面积吗?如果剪去这个平行四边形的一角,剩下的会得到什么图形呢?哪个图形的面积你会直接计算?梯形的面积该怎样计算呢?
3、揭题。
二、新授。
1、出示梯形图。
(1)提问:这是什么图形?说说梯形各部分的名称。提示:求梯形的面积能不能像推导三角形面积计算公式一样,把它转化成已经学过的图形,计算它的面积?
(2)操作实验。
反馈:你拼成了什么图形?指名拼一拼。
指导拼法。
①重合。
②旋转。哪个梯形旋转?一般可以怎样移动一个梯形?旋转到两下底成一条直线为止。
③平移。
思考:通过重合、旋转、平移的方法将两个完全一样的梯形拼成了一个平行四边形,每个梯形的面积与拼成的平行四边形的面积有什么关系?反过来还可以怎么说?
2、出示直角梯形图。
(1)两个完全一样的直角梯形又能拼成一个怎样的图形,动手拼一拼。
(2)提问:拼成了什么图形?平行四边形与梯形有什么关系?
(3)观察:每个直角梯形的面积与拼成的长方形的面积有什么关系?
小结:两个完全一样的梯形经过重合、旋转、平移的方法可以拼成一个平行四边形或长方形,并且每个梯形的面积是拼成的平行四边形或长方形的一半。
3、观察拼成的平行四边形。
思考:
(1)比较梯形的上底下底与拼成的平行四边形的底有什么关系?
(2)比较梯形的高与拼成的平行四边形的高有什么关系?
同桌讨论完成填空。
4、填表。
(1)提问:是不是所有的完全一样的两个梯形都能拼成平行四边形呢?拿出梯形用同样的方法拼一拼,并把数据填入表中。
(2)从实验中你有什么发现?说说怎样求梯形的面积?
5、教学字母公式。
提示:可以将梯形转化成平行四边形来推导它的面积计算公式,还可以将它转化成别的图形来推导它的面积计算公式。课后思考。
三、应用。
1、应用公式求梯形面积必须知道什么?知道梯形的上底、下底和高怎样求出梯形的面积?
2、学习例题。
3、完成“练一练”。
4、拓展。
四、总结。
1、这节课学习了什么内容?是将梯形转化成什么图形来学习它的面积计算公式的?
2、通过什么方法转化的?
3、梯形的面积计算公式是什么?应用公式时要注意什么?为什么要除以2?
五、板书。
梯形面积的计算
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高2
S=(a+b) h 2
《梯形面积的计算》是人教版数学第九册内容。听过学区本节公开课,确有可借鉴之处,同时也存在一些问题,值得深思。
教学成功之处主要体现在以下几点:
一、首尾照应实现数学价值。
由实际事件“帮工人师傅计算花坛面积”引出探究主题——梯形面积的计算,得出结论后,运用公式解决这一实践问题。教师创造性使用教材,改变例题为学生身边常见事物,始终将数学置于生活背景之中,充分体现数学“来源于生活,回归于生活”的理念,实现数学的应用价值。
二、转化推理蕴涵思想方法。
“梯形面积的计算”是在平行四边形、三角形面积计算的学习基础之上提出的。教师首先请学生回忆了三角形面积的推导方法,使学生意识到梯形也可与学过的其他图形产生联系,从而计算出面积。让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想,也落实了“数学要在学生已有的知识背景下学习”这一教学理念。
三、合作探究促进创造思维。
在学生独立思考、自主探索的基础上组织合作交流是本节课的重点环节。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”面对同样的问题,学生会出现不同的思维方式。利用梯形与其他图形的联系求梯形面积,学生有着不同的做法:有的利用等腰梯形、有的利用直角梯形、有的利用普通梯形,有的拼成了长方形,有的拼成普通的平行四边形;有的把梯形分割为平行四边形与三角形……自由的探讨交流带来的是思维的充分扩展,是质的飞跃。在独立思考的基础上进行合作交流,能满足学生展示自我的心理需要;通过师生互动、生生互动,促使学生从不同角度去思考问题,对自己和他人的观点进行反思与批判,在各种观点相互碰撞的过程中迸发创造性思维的火花。
考问教学细节,又发现一些问题:
镜头一:利用公式求梯形面积的练习中,一同学列式为(3.5+2)×8÷2,而原图中,3.5为下底,2为上底。教师强调:“这样做不对,应为上底加下底,也就是(2+3.5)”。
“上底加下底”与“下底加上底”,对于求梯形面积而言,究竟有何区别呢?教师本不宜如此“循规蹈矩、照本宣科”。倘若该同学反问:“把这个梯形倒过来,面积是不变的。那么我的算式是否正确?”教师该如何应答?可惜,没有一个同学提出质疑。教师强依公式而下的结论显然并不合适,为什么却无人指出?“公式是不可不依的”、“老师的结论是不可推翻的”……“一言堂”教学的印痕桎梏着师生的思维,使“探究”有时不免流于形式。对学习而言,这是可怕的。“学起于思,思起于疑。”“学贵有疑,疑则进也。”要真正发挥学生的主体作用,必须鼓励学生善疑、敢疑。当然,这需要教师的能力与勇气——自我质疑的能力、承认错误的勇气。
镜头二:学生在练习本上完成了习题,在教师示意下走上讲台,利用投影把答案展示给大家。第一次展示,同学们趣味盎然;二次、三次过后,变得兴味索然。几声简单的“对”、“同意”,使课堂气氛趋于沉闷。
作为教学辅助手段,多媒体愈来愈受到师生青睐。但是,多媒体的运用必须把握好“度”。不是所有环节都适合使用多媒体,不是任何步骤的实施都需要多媒体。学生练习的是几道非常简单的基础性题目,正确率相当高,教师巡视时也能发现这点,那么,以口答的形式订正不仅简单明了,更节省了宝贵的课堂时间。对于稍有难度的题目,则可以利用多媒体展示的方式,组织学生进行短时间交流,使学生知其然亦知其所以然,而不是简单地回答“对”或者“错”。