作为一名人民老师,课堂教学是重要的工作之一,在写教学反思的时候可以反思自己的教学失误,怎样写教学反思才更能起到其作用呢?书痴者文必工,艺痴者技必良,以下是敬业的小编帮大家找到的5篇正比例教学反思的相关文章,希望对大家有所帮助。
第一节的内容是正比例的意义,出示例的表格后,学生从中发现了多个规律,学生说出若干规律后,我追问学生:这些规律中,我们最常用的最容易想到的是什么?(生:是用路程去除以时间得到的速度是相同的)路程除以时间还可以怎样说?(引生说:还可以说成是路与时间的比的比值,也就是速度是相同的——师:也就说比值是一定的。)由此,引到正比例的意义中去……
成正比例的关系的两个量必须具备两个特征——一是相关联,二是它们的比值是一定的。教材中例子除了正方形的面积与边长相关联,但是不成正比例外,告知的两个量都是成正比例的量,反例很少,结果,让人感受不到“关联”的联系程度,感觉就是比值一定,两个量就成正比例,许多学生拿到数据就直接看比值了,忽略了之间的“关联”。因此,在教学时,可以补充一些例子,让学生进行判断,特别夹杂一些不成正比例的例子,比如:
红花的朵数和鸡蛋的个数成正比例吗?为什么?
(3)和一定,一个加数和另一个加数成正比例吗?为什么?
像上面的两个例子,有时很难判断。
给(1)不成正比例的理由就是,一个人的体重和岁数不能一直保持正比例的关系,比如他老了可能都不增体重了。
给(2)不成正比例的理由就是,红花的朵数和鸡蛋的个数不太相关联。
但是上面的两例在特殊情况下又都像是成正比例的。
给(1)成正比例的理由——假如小磊在8岁前都是这样的一年增重4千克地成长着,但是8岁时夭折了。这8年(一生)的岁数与体重,你能说不成正比例吗?
给(2)成正比例的理由——假如这个表格记录的是两个商贩正在进行商品的交换的过程(用红玫瑰去交换鸡蛋),你又能说这儿的花的朵数与蛋的个数不成正比例吗?
此外,对于那些两量之间存在显而易见的关联,学生叙述成正比例的理由时,我都只要求说出是哪两个量的比值一定就行了。
第二节课的正比例的图像,例2的教学,我先给学生一个空的数轴图,让学生试着,在图中表示出表数的各组数据来,再让学生说说各点表示的意思,再让学生说说这些点看上去有什么规律(在同一条和直线上),在此基础上连点成线。最后让学生通过找对应量(在学生找到后,我还让学生通过计算进行了验证,计算还用了两种方法,一是归一法,一是解比例法),感受正比例图像直线特点。这一节课的设计是很有价值的,对日后中学数学的学习有很大的帮助。
下午第二节课的。“实际测量”我大体是按照教材的思路组织学生在操场进行活动的,在第一个环节上,为了让学生能够感受到两点之间绝对直线式测量,在长距离的中间中正确添加标杆的方法,我特意让学生测量操场的斜对角,以免学生测量直跑道时,直接贴着跑道的路沿进行测量,感受不到教材提及的方法,又由于没有找到正宗的标杆,只得利用班里的四个拖把代替了标杆,进行测量时,大家都感到拖把比标杆更好用,因为操场都是水泥地的,用标杆是插不下去的,而拖把自己就可以站立在操场上,调好位置后,扶的人都可以走开去,更利于别的同学观察。下面的步测和目测效果都很好,只是目测学生不能有很好的感受,感觉作用不大,实际应用起来比较困难,只得提示学生今后有机会多练就会有感觉了!
1.学习方式的一点点转变,带来学习效果的一大块进步。
要改变以往接受式的学习,多给学生探索、动手操作的时间与空间,让学生在探索中自主发现规律。实践表明,学生喜欢动手操作,喜欢有挑战性的问题,能够积极主动投入到学习中。在正比例的练习中,学生都能够用除法去验证结果是不是一定的,从而判断两种量是否成正比例,可见教学效果非常好。
2.重视知识的形成过程,放慢学习速度,有助于概念的理解。
新课程标准中强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的。同时,在思维能力、情感态度与价值观等多方面得到进步和发展。正比例意义一课包含的难点很多,正比例的意义,正比例的图像都是教学的难点,如果把这些知识都集中在一堂课中,学生囫囵吞枣,理解得不深不透。本节课把教学目标定位于正比例的意义,并且在发现规律上重点着墨,看起来好像是浪费了很多时间,俗话说:磨刀不误砍柴功,学生在知识的形成过程中,已经深刻理解了重点词相关联的量、比值一定的含义,为后继学习扫清了障碍。
3.一点点遗憾
在同一时间,同一地点,物体的竿高与影长是成正比例的。如果能够让学生到外面实际测量一下,会更有说服力。
上完课后,虽然看了听课老师给我的评价,但我一直在思考,学生是怎么评价的呢?在学生眼里,到底哪个地方出问题了呢?突然,灵机一动,干脆和学生一起交流一下吧,也许效果还更好呢?通过与学生交谈,让大家一起再次回顾本节课,找一找优点和不足,学生的回答很是让我惊奇,现摘录如下:
优点:
1、课堂导入新颖、有趣、有效,结尾有所创新,改变了以前“通过本节课的学习,大家有什么收获呢?”等传统方式,从而使得大家大家想学、乐学;
2、老师讲的详细,特别是讲授两种相关联的量,用通俗、简单的语言让大家一听就明白了,并且很快就可以判断出是否是两种相关联的量;
3、题目与现实生活联系紧密,让大家感觉学习数学很有用;
4、课堂上学生讨论的时间充足,参与度较高,且时效性较强;
5、课堂调控能力较强,有自己的教学风格;
6、板书明确、清晰,一目了然;
7、设计合理,处理偶发事件的能力较强。
缺点:
1、课堂气氛没有以前活跃;
2、知识量太大,难度较大,很少有不经过思考或稍作思考就能回答出来的问题;
3、小组合作时,没有分好工,导致在计算相对应的每组数的和、差、积、商时,每个同学都在计算,因而用的时间较多,如果四人小组分好工,没人计算一种运算,时间就会节约一半。
4、对学生的鼓励性语言欠缺。
星期五我上了研究课《正比例》,本课是在学生学习了变化的量之后的一个内容,通过学习,使学生理解正比例的意义,会正确判断成正比例的量,并能根据特点解决生活中的一些简单问题。根据教材的内容和特点,我试采用永威的“先教后学,当堂检测”的模式,实验后感觉孩子 www.jingyou.net 们不会自学,当自学指导出示后,都在那等结果,所以我认为应在课堂中逐步培养学生的自主学习能力。
一、复习旧知,引入课题
课前,我先提问学生:“什么是相关联的量,谁能举个例子说一说?”学生很快说出“时间、路程、速度”之间的关系、“总价、数量、单价”的关系等等。由此我导入了新课:这节课我们要以一种新的观点来继续深入研究这些数量之间的关系。这样的导入就为下面的新授进行了有效的铺垫。
二、自主探究,学习新知。
出示例1表格,让学生观察并说说所获得的信息。首先,要让学生弄清什么叫“两种相关联”的量。我引导学生从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?让学生试着写出几组行驶的路程和它所对应的。时间的比的比值,发现它们比值是一样的,都是80。接着就追问:“这里的80表示什么?”学生很快回答出是“速度”,于是我就顺势揭示了“路程和它所对应的时间的比的比值一定时,路程就和时成正比例,路程和时间是成正比例的量。”这样就很好的解决了本课的难点。接着让学生做书上的“试一试”,用刚才所学的知识来判断总价和数量是否成正比例。学生很好的解决了这一问题。然后让学生对例1和“试一试”进行比较,发现都有这样共同的特点:“都有两个相关联的变量,两个量的比的比值都是一定的,这两个量都是成正比例”,引出了用字母来表示正比例Y:X=K(一定),Y和X成正比例。
三、巩固拓展,深化提高。
理清了新知识的知识脉络后,就要进行相应的练习,让学生来判断两种量是不是成正比例,要求学生独立思考、认真分析,并要能说出判断的理由,这样既巩固了新知,又锻炼了学生的语言表达能力。
一节课下来,学生在自主探究中得出了规律,学习效果很好,并且能够体验到了学习的快乐。而我也深深的体会到在教学过程中就应该“该放手时就放手”。
在教学《正比例和反比例的复习》这一课时,我就开门见山的向学生提问那谁来说说正比例和反比例之间的有什么区别和联系?完成这张表格。出示小黑板。
正比例和反比例的比较:
让学生通过观察表格,总结出两种比例关系下两种量不同的变化规律,即另一方面的不同点。
在原来的教学设计中,我只是简单的安排了复习,让学生口述正反比例的意义,然后再让学生做几个判断正反比例的题目,在实际上的过程中,我让学生自己复习完成上面的表格。
目的有两个:
1、使一部分不能完整说出意义的后进生有个清楚的再认识,达到巩固旧知的教学目的。
2、为让学生准确说出两者的不同点和相同点铺设道路。学生常无法用准确的语言总结两者的联系表达出来,所以这一小小的临时改动收到了良好的效果。
因此,个人认为在以后的教学设计中,复习的设计也要多样化,要把复习当作新课一样来加以修改、创新,让复习课取得更好的教学效果。