学校初二数学教案(优秀14篇)

作为一名老师,总不可避免地需要编写教案,教案是教学蓝图,可以有效提高教学效率。我们应该怎么写教案呢?问渠那得清如许,为有源头活水来,这里是人美心善的小编帮家人们找到的14篇初二数学教案的相关文章,仅供参考,希望可以帮助到有需要的朋友。

八年级数学教案 篇1

教学指导思想与理论依据

《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。” 教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的。效果。

教学内容分析:

本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。

学生情况分析:

本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。

教学方式与教学手段说明:

本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。

知识与技能:

1、初步理解特殊四边形性质;

2、培养学生自主收集、描述和分析数据的能力;

过程与方法:

1、了解特殊四边形性质的形成过程;

2、初步了解探究新知识的一些方法;

情感与价值观:

1、了解特殊四边形在日常生活中的应用;

2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;

3、初步具有感性认识上升到理性认识的辩证唯物主义思想。

教学环境:

多媒体计算机网络教室

教学课型:

试验探究式

教学重点:

特殊四边形性质

教学难点:

特殊四边形性质的发现

一、设置情景,提出问题

提出问题:

知识已生活,又服务于生活。我们经过校门时,是否注意到电动门的机械工作原理(教师用几何画板演示)?

1、电动门的网格和结点能组成哪些四边形?

2、在开(关)门过程中这些四边形是如何变化的?

3、你还发现了什么?

解决问题:

学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;

当我们学习完本节知识后,其他问题就容易解决了。

(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)

二、整体了解,形成系统

本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。

提出问题:

1、本章主要研究哪些特殊四边形?

2、从哪几方面研究这些特殊四边形?

3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有图形呢?假设有是什么图形呢?如果没有,为什么?

解决问题:

学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。

1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形

2、从边、角、对角线、面积、周长、……等方面研究。本节课主要从边、角、对角线三方面考虑;

3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。

(意图: 学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)

三、个体研究、总结性质

1、平行四边形性质

提出问题:

在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。

解决问题:

教师引导学生拖动B点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。

在图形变化过程中,

(1)对边相等;

(2)对角相等;

(3)通过AO=CO 、BO=DO,可得对角线互相平分;

(4)通过邻角互补,可得对边平行;

(5)内外角和都等于360度;

(6)邻角互补;

……

指导学生填表:

平行四边形性质矩形性质正方形性质

菱形性质

梯形性质等腰梯形性质

直角梯形性质

(既属于平行四边形性质又属于矩形性质可以画箭头)

按照平行四边形性质的探索思路,分别研究:

2、矩形性质;

3、菱形性质;

4、正方形性质;

5、梯形性质;

6、等腰梯形性质;

7、直角梯形的性质。

(意图: 学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)

教师总结:

(意图: 掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)

四、联系生活,解决问题

解决问题:

学生操作电脑,观察图形、分组讨论,教师个别指导。

学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。

四边形具有不稳定性,而三角形没有这个特点……

(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)

五、小结

1.研究问题从整体到局部的方法;

2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。

六、作业

1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。

2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。

学习效果评价

针对教学内容、学生特点及设计方案,预计下列学习效果:

利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。

在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。

学生演示开(关)门过程中,了解特殊四边形在日常生活中的应用,并用所学的知识解释实际问题,使自身价值得以实现并体会成功后的喜悦;

由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。

数学初二教案 篇2

考标要求:

1体会因式分解法适用于解一边为0,另一边可分解为两个一次因式的乘积的一元二次方程;

2会用因式分解法解某些一元二次方程。

重点:用因式分解法解一元二次方程。

难点:用因式分解把一元二次方程化为左边是两个一次二项式相乘右边是零的形式。

一填空题(每小题5分,共25分)

1解方程(2+x)(x-3)=0,就相当于解方程()

A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0

2用因式分解法解一元二次方程的思路是降次,下面是甲、乙两位同学解方程的过程:

(1)解方程:,小明的解法是:解:两边同除以x得:x=2;

(2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0

其中正确的是()

A小明B小亮C都正确D都不正确

3下面方程不适合用因式分解法求解的是()

A2-32=0,B2(2x-3)-=0,,D

4方程2x(x-3)=5(x-3)的根是()

Ax=,Bx=3C=,=3Dx=

5定义一种运算“※”,其规则为:a※b=(a+1)(b+1),根据这个规则,方程x※(x+1)=0的解是()

Ax=0Bx=-1C=0,=-1,D=-1=-2

二填空题(每小题5分,共25分)

6方程(1+)-(1-)x=0解是=XXXXX,=XXXXXXXXXX

7当x=XXXXXXXXXX时,分式值为零。

8若代数式与代数式4(x-3)的值相等,则x=XXXXXXXXXXXXXXXXX

9已知方程(x-4)(x-9)=0的解是等腰三角形的两边长,则这个等腰三角形的周长=XXXXXXX.

10如果,则关于x的一元二次方程a+bx=0的`解是XXXXXXXXX

三解答题(每小题10分,共50分)

11解方程

(1)+2x+1=0(2)4-12x+9=0

(3)25=9(4)7x(2x-3)=4(3-2x)

12解方程=(a-2)(3a-4)

13已知k是关于x的方程4k-8x-k=0的一个根,求k的值。?

14解方程:-2+1=0

15对于向上抛的物体,在没有空气阻力的情况下,有如下关系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(为方便起见,本题中g取10米/),t是抛出后所经过的时间。

如果将一物体以每秒25米的初速向上抛,物体多少秒后落到地面

八年级数学教案 篇3

教学建议

1、平行线等分线段定理

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。

注意事项:定理中的。平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。

2、平行线等分线段定理的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”。

推论的用途:(1)平分已知线段;(2)证明线段的倍分。

重难点分析

本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。

本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意。

教法建议

平行线等分线段定理的引入

生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业本、栅栏、等等;

②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。

教学设计示例

一、教学目标

1、使学生掌握平行线等分线段定理及推论。

2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。

3、通过定理的变式图形,进一步提高学生分析问题和解决问题的能力。

4、通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1、教学重点:平行线等分线段定理

2、教学难点:平行线等分线段定理

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤

【复习提问】

1、什么叫平行线?平行线有什么性质。

2、什么叫平行四边形?平行四边形有什么性质?

【引入新课】

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线 ,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线 ,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)

平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确。

下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证)。

已知:如图,直线 , 。

求证: 。

分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得 ),通过全等三角形性质,即可得到要证的结论。

(引导学生找出另一种证法)

分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得 。

证明:过 点作 分别交 、 于点 、 ,得 和 ,如图。

∵ ,

又∵ , ,

为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示)。

引导学生观察下图,在梯形 中, , ,则可得到 ,由此得出推论 1。

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

再引导学生观察下图,在 中, , ,则可得到 ,由此得出推论2。

推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。

注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。

接下来讲如何利用平行线等分线段定理来任意等分一条线段。

例 已知:如图,线段 。

求作:线段 的五等分点。

作法:①作射线 。

②在射线 上以任意长顺次截取 。

③连结 。

④过点 。 、 、 分别作 的平行线 、 、 、 ,分别交 于点 、 、 、 。

、 、 、 就是所求的五等分点。

(说明略,由学生口述即可)

【总结、扩展】

小结:

(l)平行线等分线段定理及推论。

(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明。

(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组。

(4)应用定理任意等分一条线段。

八、布置作业

教材P188中A组2、9

九、板书设计

十、随堂练习

教材P182中1、2

八年级数学教案 篇4

教学目标:

1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:

算术平方根的概念。

教学难点:

根据算术平方根的概念正确求出非负数的算术平方根。

教学过程

一、情境导入

请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少 ?如果这块画布的面积是 ?这个问题实际上是已知一个正数的平方,求这个正数的问题?

这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。

二、导入新课:

1、提出问题:(书P68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值。

一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根。a的算术平方根记为 ,读作根号a,a叫做被开方数。规定:0的算术平方根是0.

也就是,在等式 =a (x0)中,规定x = 。

2、 试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来。

3、 想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如 表示25的算术平方根。

4、例1 求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

三、练习

P69练习 1、2

四、探究:(课本第69页)

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受 的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

五、小结:

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

六、课外作业:

P75习题13.1活动第1、2、3题

初二数学教案 篇5

教学建议

知识结构:

重点难点分析:

是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简。商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握。

教学难点是二次根式的除法与商的算术平方根的关系及应用。二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号。由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式。

教法建议:

1、 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质。教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向。

2、 本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化。这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开。

3、 引导学生思考想一想中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维。

教学设计示例

一、教学目标

1、掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

2、会进行简单的二次根式的除法运算;

3、使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

4、 培养学生利用二次根式的除法公式进行化简与计算的能力;

5、 通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

6、 通过分母有理化的教学,渗透数学的简洁性。

二、教学重点和难点

1、重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行。

2、难点:二次根式的除法与商的算术平方根的关系及应用。

三、教学方法

从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

内容可引导学生自学,进行总结对比。

四、教学手段

利用投影仪。

五、教学过程

(一) 引入新课

学生回忆及得算数平方根和性质: (a0,b0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的。)

学生观察下面的例子,并计算:

由学生总结上面两个式的关系得:

类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

(二)新课

商的算术平方根。

一般地,有 (a0,b0)

商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

让学生讨论这个式子成立的条件是什么?a0,b0,对于为什么b0,要使学生通过讨论明确,因为b=0时分母为0,没有意义。

引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算。

例1 化简:

(1) ; (2) ; (3) ;

解∶(1)

(2)

(3)

说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数。

例2 化简:

(1) ; (2) ;

解:(1)

(2)

让学生观察例题中分母的特点,然后提出, 的问题怎样解决?

再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况, 的问题,我们将在今后的学习中解决。

学生讨论本节课所学内容,并进行小结。

(三)小结

1、商的算术平方根的性质。(注意公式成立的条件)

2、会利用商的算术平方根的性质进行简单的二次根式的化简。

(四)练习

1、化简:

(1) ; (2) ; (3) 。

2、化简:

(1) ; (2) ; (3)

六、作业

教材P.183习题11.3;A组1.

七、板书设计

八年级数学教案 篇6

知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数

能力目标:会用变化的量描述事物

情感目标:回用运动的观点观察事物,分析事物

重点:函数的概念

难点:函数的概念

教学媒体:多媒体电脑,计算器

教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围

教学设计:

引入:

信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?

新课:

问题:(1)如图是某日的气温变化图。

① 这张图告诉我们哪些信息?

② 这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?

(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:

① 这表告诉我们哪些信息?

② 这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?

一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

范例:例1 判断下列变量之间是不是函数关系:

(5) 长方形的宽一定时,其长与面积;

(6) 等腰三角形的底边长与面积;

(7) 某人的年龄与身高;

活动1:阅读教材7页观察1. 后完成教材8页探究,利用计算器发现变量和函数的关系

思考:自变量是否可以任意取值

例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。

(1) 写出表示y与x的函数关系式。

(2) 指出自变量x的取值范围。

(3) 汽车行驶200km时,油箱中还有多少汽油?

解:(1)y=50-0.1x

(2)0500

(3)x=200,y=30

活动2:练习教材9页练习

小结:(1)函数概念

(2)自变量,函数值

(3)自变量的取值范围确定

作业:18页:2,3,4题

数学初二教案 篇7

一、教学目标

1、了解二次根式的意义;

2、 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3、 掌握二次根式的性质 和 ,并能灵活应用;

4、通过二次根式的计算培养学生的逻辑思维能力;

5、 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美。

二、教学重点和难点

重点:(1)二次根的意义;(2)二次根式中字母的取值范围。

难点:确定二次根式中字母的取值范围。

三、教学方法

启发式、讲练结合。

四、教学过程

(一)复习提问

1、什么叫平方根、算术平方根?

2、说出下列各式的意义,并计算:

通过练习使学生进一步理解平方根、算术平方根的概念。

观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,

表示的是算术平方根。

(二)引入新课

我们已遇到的这样的式子是我们这节课研究的内容,引出:

新课:二次根式

定义: 式子 叫做二次根式。

对于 请同学们讨论论应注意的问题,引导学生总结:

(1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的外在形态。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

例1 当a为实数时,下列各式中哪些是二次根式?

分析: , , , 、 、 、 四个是二次根式。 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0

例2 x是怎样的实数时,式子 在实数范围有意义?

解:略。

说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义。

例3 当字母取何值时,下列各式为二次根式:

(1) (2) (3) (4)

分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式。

解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式。

(2)-3x0,x0,即x0时, 是二次根式。

(3) ,且x0,x0,当x0时, 是二次根式。

(4) ,即 ,故x-20且x-20, x2.当x2时, 是二次根式。

例4 下列各式是二次根式,求式子中的字母所满足的条件:

(1) ; (2) ; (3) ; (4)

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即: 只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

解:(1)由2a+30,得 。

(2)由 ,得3a-10,解得 。

(3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式。 所以所求字母x的取值范围是全体实数。

(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

(三)小结(引导学生做出本节课学习内容小结)

1、式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式。

2、式子中,被开方数(式)必须大于等于零。

(四)练习和作业

练习:

1、判断下列各式是否是二次根式

分析:(2) 中, , 是二次根式;(5)是二次根式。 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义。

2.a是怎样的实数时,下列各式在实数范围内有意义?

五、作业

教材P.172习题11.1;A组1;B组1.

六、板书设计

初二数学教案 篇8

一、学习目标:

1、使学生会用完全平方公式分解因式。

2、使学生学习多步骤,多方法的分解因式

二、重点难点:

重点:让学生掌握多步骤、多方法分解因式方法

难点:让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式

三、合作学习

创设问题情境,引入新课

完全平方公式(a±b)2=a2±2ab+b2

讲授新课

1、推导用完全平方公式分解因式的公式以及公式的特点。

将完全平方公式倒写:

a2+2ab+b2=(a+b)2;

a2-2ab+b2=(a-b)2.

凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解

用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。

由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

练一练。下列各式是不是完全平方式?

(1)a2-4a+4; (2)x2+4x+4y2;

(3)4a2+2ab+ b2; (4)a2-ab+b2;

四、精讲精练

例1、把下列完全平方式分解因式:

(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.

例2、把下列各式分解因式:

(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.

课堂练习:教科书练习

补充练习:把下列各式分解因式:

(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;

五、小结:

两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方

形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。

六、作业:

1、分解因式:

X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2

45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4

八年级数学教案 篇9

教学内容和地位:

众数、中位数是描述一组数据的集中趋势的两个统计特征量,是帮助学生学会用数据说话的基本概念。本节课的教学内容和现实生活密切相关,是培养学生应用数学意识和创新能力的最好素材。

教学重点和难点:

本节课的重点是众数和中位数两概念的形成过程及两概念的运用。本节课的难点是对统计数据从多角度进行全面地分析。因为利用数据进行分析,对刚刚接触统计的学生来说,他们原有的认知结构中缺乏这方面的知识经验,所以,我们可以借助生活中的事例,利用丰富多彩的多媒体辅助,帮助学生突破这一知识难点。

教学目标分析:

认知目标:

(1)使学生认知众数、中位数的意义;

(2)会求一组数据的众数、中位数。

能力目标:

(1)让学生接触并解决一些社会生活中的问题,为学生创新学数学、用数学的情境,培养学生的数学应用意识和创新意识。

(2)在问题解决的过程中,培养学生的自主学习能力;

(3)在问题分析的过程中,培养学生的团结协作精神。

情感目标:

(1)通过多媒体网络课件,提供适当的问题情境,激发学生的学习热情,培养学生学习数学的兴趣;

(2)在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。

教学辅助:网络教室、多媒体辅助网络教学课件、BBS电子公告栏、学习资源库

教法与学法:

根据本节课的教学内容,主要采用了讨论发现法。即课堂上,教师(或学生)提出适当的问题,通过学生与学生(或教师)之间相互交流,相互学习,相互讨论,在问题解决的过程中发现概念的产生过程,体现“数学教学是数学思维活动的过程的教学”。在教学活动中,通过学生的自主学习来体现他们的主体地位,而教师是通过对学生参与学习的启发、调整、激励来体现自己的主导作用。另外,在学生合作学习的同时,始终坚持对学生进行“学疑结合”、“学思结合”、“学用结合”的学法指导,这对学生的主体意识的培养和创新能力的培养都有积极的意义。

初二上册数学教学计划 篇10

不断改进教学方法,提高自身业务素养。教学中注重自主学习、合作学习、探究学习。

一、制定计划的目的

为使学生学好代数、几何的基础知识,具备当代社会中每一位公民适应日常生活、参加社会生产和进一步学习所必需的基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识,特制定本学科教学计划

二、加强知识间的联系

在“全等三角形”一章,三角形的画法与三角形全等条件的探索相结合,也就是说,三角形全等条件不是直接给出的,而是让学生画出与已知三角形某些元素对应相等的三角形,画完以后,再剪剪量量,在这个基础上启发学生想一想,判定两个三角形全等需要什么条件。这样让学生自己动手画图实验,就会对相关结论印象深刻。将三角形的画法与三角形全等条件的探索相结合,也比单独讲三角形的画法效果好,单讲容易单调枯燥。

在“轴对称”一章,图形的变换与图形的认识相结合,本册书先安排轴对称的内容,再安排等腰三角形的内容。这样就可以从变换的角度认识等腰三角形,从而加强两者之间的联系。另外,在本章中安排“用坐标表示轴对称”的内容,也是为了数形结合,加强知识之间的联系。

在实数一章,内容属于“数与代数”这个领域,有关数的内容,学生在七年级上册已经系统学过有理数,对有理数的概念和运算等有了较深的认识,本章是在有理数的基础上学习实数的初步知识,由于数的扩充的一致性,本章很多内容是有理数相关内容的延伸和推广,因此,要注意加强知识间的相互联系。例如,对于绝对值和相反数的概念,实数的运算法则和运算性质,平方与开平方、立方与开立方的互为逆运算关系等都是在有理数的基础上展开的。另外,本章前两节“平方根”、“立方根”在内容上基本是平行的,因此,在“立方根”一节,充分利用了类比的方法,例如类比平方根的概念的引入方式给出立方根的概念,类比开平方运算给出开立方运算,类比平方与开平方运算的互逆关系研究立方与开立方运算的互逆关系等。这样的编写方法,有助于加强知识间的相互联系,通过类比旧知识学习新知识,使学生的学习形成正迁移。

在“一次函数”一章,专门安排“用函数观点看方程(组)与不等式”一节,分别探讨一次函数与一元一次方程,一次函数与一元一次不等式,一次函数与二元一次方程(组)之间的关系。这样就可以让学生发现一次函数,一元一次方程,一元一次不等式之间的联系,用函数的观点把互相联系的方程(组)、不等式、函数统一起来。

在“整式”一章,将整式的乘法与因式分解安排在同一章,也是加强它们之间的联系。另外,让学生用面积说明乘法公式,可以使学生从数与形的角度把握有关内容,例如,从图形的角度,学生很容易避免的错误。

三、培养推理能力

在“全等三角形”一章,正式出现证明及证明的格式。七年级两册教科书中安排了一些说理的内容,就是为现在正规练习证明作准备的。要求学生有理有据地推理证明,精练准确地表达推理过程,是比较困难的。为了解决这个难点,教科书做了一些努力。

1、注意减缓坡度,循序渐进。开始阶段,证明的方向明确,过程简单,书写容易规范化。这一阶段要求学生体会例题的证*路及格式,然后再逐步增加题目的复杂程度,小步前进,每一步都为下一步作准备,下一步又注意复习前一步训练的内容。特别是在第十一章里,通过精心选择全等三角形的证明问题,减缓学生学习几何证明的坡度。

2、在不同的阶段,安排不同的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。例如,在“全等三角形”一章,让学生会证明两个三角形全等,通过证明三角形全等,证明两条线段或两个角相等,从而熟悉证明的步骤和方法。在第十二章与等腰三角形有关的内容中,重点培养学生会分析思路,会根据需要选择有关的结论去证明。

3、注重分析思路,让学生学会思考问题,注重书写格式,让学生学会清楚地表达思考的过程。

4、在与“数与代数”有关的章节安排证明的内容。例如,在“整式”一章,让学生发现一些规律并加以证明,或直接让学生证明一些结论。

四、批改作业跟课外辅导

精批细改好每一位学生的每份作业,学生的作业缺陷,师生都心中有数。对每位同学的作业订正和掌握情况都尽力做到及时反馈,再次批改,让学生获得了一个较好的巩固机会。

全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学生障碍,增强学生信心,尽可能“吃得了”。积极开展数学讲座,课外兴趣小组等课外活动。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。

初二上册数学教学计划 篇11

一、学生起点分析

学生的知识技能基础:在本章的学习中,学生已会利用平均数的公式进行计算,并能解决一些相关的实际问题;在《有理数》和《实数》的章节中,学生曾学习用计算器计算数的加、减、乘、除、乘方和开方运算,已初步具有利用计算器处理数据的基本技能。

学生活动经验基础:学生在前面的数学学习活动中,已获得了从事统计活动所必须的数学方法,形成了动手实践、自主探索、合作交流的学习方式,积累了使用计算器处理数据和进行探索活动的一些数学活动经验。

二、学习任务分析

本节课的学习任务是:初步经历数据的收集、加工与整理的过程,通过自主探索,学会利用计算器求一组数据的平均数;通过例题和习题的学习,加强知识之间的联系,巩固对各种图表信息的识别和评判能力,发展学生初步的统计意识和数据处理能力,达成有关的情感态度目标。为此,本节课的教学目标是:

1、知识与技能:根据给定信息,会利用计算器求一组数据的平均数,并会进行数据的收集、加工与整理。

2、过程与方法:初步经历数据的收集、加工与整理的过程,发展学生初步的统计意识和数据处理能力。

3、情感与态度:通过使用计算器求平均数的探索活动,培养学生的探索精神和创新意识;通过相互间合作交流,让所有学生都有所获,共同发展。

三、教学过程设计

本节课设计了五个教学环节:第一环节:情境引入;第二环节:活动探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:情境引入

内容:展示引例:20xx年第一季度我国各地区农村家庭平均每人现金收入情况表:(单位:元)

请计算这组数据的平均数,在计算过程中,你体会到什么困难吗?

显然,当一组数据比较大且比较多时,用笔计算平均数较麻烦,因此,需要一个帮手—计算器,这节课就来学习用计算器求平均数。

目的:通过以上用笔计算一组较大且较多数据的平均数,使学生感到笔算的麻烦与困难,产生用计算器求平均数的欲望,从而调动学生学习的积极主动性。另外,给这组数据赋予“我国各地区农村家庭平均每人现金收入情况”的背景,是想让学生关注社会的发展,增强社会责任感。

注意事项:引例不一定非要算出结果来,只要让学生尝试一下用笔计算较大且较多数据的平均数的困难,产生用计算器求平均数的欲望,就可引入课题,不要过多地耽误课堂时间。

第二环节:活动探究

内容:学生分组(拿同类型计算器的同学分在一起)活动探究,看哪个小组做得好:

(1)估计一下自己课桌的宽度,并将各组员的估计结果统计出来(精确0.1厘米)。

(2)用计算器求出估计结果的平均值,你是怎么做的?与同伴交流。在学生分组合作探究的基础上,全班总结交流不同类型的计算器求平均数的一般步骤,教师根据反馈的信息,及时进行评价。

(3)用尺子量一量课桌的宽度,看看大家估计的结果怎么样。

各组派代表谈谈本组估计结果的准确度,对准确度较高的小组进行表扬,并评为优秀小组以资鼓励。

目的:活动(1)是让学生初步经历数据的收集、加工与整理的过程,进一步发展学生初步的统计意识和数据处理能力。

活动(2)是通过相互比较,引起学生对计算方式的思考,做出自我评判,从而正确掌握用计算器求平均数的方法。全班总结交流不同类型的计算器求平均数的一般步骤,可以开阔视野,增长才干。

活动(3)的评价是为了学生的成功感和自信心,激励他们继续探索和创新,把数学做得更好。

注意事项:教师首先要是熟悉本班学生所用各类型计算器的使用方法,其次在学生分组活动时,教师要巡视、倾听,鼓励学生自己探索计算器的用法,但在必要时可做适当的指导。

第三环节:运用提高

内容:

1、利用计算器计算下列数据的平均数:12.8,12.9,13.4,13.0,14.1,13.5,12.7,12.4,13.9,13.8,14.3,13.2,13.5。

2、观察下图1,利用计算器计算上海东方大鲨鱼篮球队队员的平均年龄。

3、英语老师布置了10道选择题作为课堂练习,小丽将全班同学的解题情况

4、利用计算器计算本节课的引例中我国各地区农村家庭平均每人现金收入的平均数、中位数和众数,并回答下列问题:

(1)如果要如实反映我国农村的现金收入状况,你会用哪个数据?

(2)如果要展示我国农村发展形势好,你会用哪个数据?

(3)从这些数据中,你获得了哪些信息?有何感想?

目的:第1题是课本上的练习题,直接利用计算器计算一组数据的平均数。第2、3题分别是课本上的例题和练习题,作用是加强知识之间的联系,巩固对各种图表信息的识别和评判能力。把第2题课本例题放在练习题后,题目显得有梯度,能更好地体现循序渐进的原则。第4题前呼后应,解决引例中“悬案”,充分体现用计算器计算一组较大且较多数据的平均数的优越性,培养学生运用现代技术手段的主动意识,以及选择恰当的数据代表对问题作出评判的能力。

注意事项:第2、3题都有几个相同数据的求和,在输入这些数据时,要让学生注意键的连续使用。第4题要留出时间让学生交流各自获得的信息和感想,互相启发,共同提高。

初二数学优秀教案 篇12

教学目标:

1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

教学重点:

本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。

教学方法:

动手实践、讨论。

教学工具:

课件

教学过程:

一、 先复习轴对称图形的定义,以及轴对称的相关的性质:

1、如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________。

2、轴对称的三个重要性质_______________________________________________________。

二、提出问题:

二、探索练习:

1、 提出问题:

如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。

你能画出这个图案的另一半吗?

吸引学生让学生有一种解决难点的想法。

2、分析问题:

分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可

问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点 ,可采用如下方法:`

在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。

三、对所学内容进行巩固练习:

1、 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

2、 试画出与线段AB关于直线L的线段

3、如图,已知 直线MN,画出以MN为对称轴 的轴对称图形

小 结: 本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。

教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。因本节课内容较有趣,许多学生上课积极性较高

初二数学教案 篇13

重难点分析

本节的重点是矩形的性质和判定定理。矩形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是有一个角是直角,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。矩形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

本节的难点是矩形性质的灵活应用。由于矩形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是矩形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

教法建议

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

1、矩形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

2、矩形在现实中的实例较多,在讲解矩形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识。

3、 如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些。

4、 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳。

5、 由于矩形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明。

6、在矩形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

矩形教学设计

教学目标

1、知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。

2、能运用以上性质进行简单的证明和计算。

此外,从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。

引导性材料

想一想:一般四边形与平行四边形之间的相互关系?在图4.5-l的圆圈中填上四边形和平行四边形的字样来说明这种关系:即平行四边形是特殊的四边形,又具有一般四边形的一切性质;具有一些特殊的性质。

小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在图4.5-1中再画一个圈表示矩形,这个圈应画在哪里?

(让学生初步感知矩形与平行四边形的从属关系。)

演示:用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示如图4.5-2,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形(矩形)。

问题1:从上面的演示过程,可以发现:平行四边形具备什么条件时,就成了矩形?

说明与建议:教师的演示应充分展现变化过程,从而让学生深切地感受到短形是无数个平行四边形中的一个特例,同时,又使学生能正确地给出矩形的定义。

问题2:矩形是特殊的平行四边形,它除了有一个角是直角以外,还可能具有哪些平行四边形所没有的特殊性质呢?

说明与建议:让学生分组探索,有必要时,教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形有一个角是直角矩形的四个角都相等(矩形性质定理1),要学生给以证明(即课本例1后练习第1题)。

学生能探索得出矩形的邻边互相垂直的特性,教师可作说明:这与矩形的四个角是直角本质上是一致的,所以不必另列为一个性质。

学生探索矩形的四条对角线的大小关系时,如有困难,可引导学生测量并比较矩形两条对角线的长度,然后加以证明,得出性质定理2。

问题3:矩形的一条对角线把矩形分成两个直角三角形,矩形的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?

说明与建议:(1)让学生先观察图4.5-3,并议论猜想,如学生有困难,教师可引导学生观察图中的一个直角三角形(如Rt△ABC),让学生自己发现斜边上的中线BO与斜线AC的大小关系,然后让学生自己给出如下证明:

证明:在矩形ABCD中,对角线AC、BD相交于点O,AC=BD(矩形的对角线相等)。

,AO=CO

在Rt△ABC中,BO是斜边AC上的中线,且 。

直角三角形斜边上的中线等于斜边的一半。

例题解析

例1:(即课本例1)

说明:本题难度不大,又有助于学生加深对性质定理的理解,教学中应引导学生探索解法:

如图4.5-4,欲求对角线BD的长,由于BAD=90,AB=4cm,则只要再找出Rt△ABD中一条直角边的长,或一个锐角的度数,再从已知条件AOD=120出发,应用矩形的性质可知,ADB=30,另外,还可以引导学生探究△AOB是什么特殊的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下:

∵四边形ABCD是矩形,

AC=BD(矩形的对角线相等)。

又 。

OA=BO,△AOB是等腰三角形,

∵AOD=120,AOB=180- 120= 60

AOB是等边三角形。

BO=AB=4cm,

BD=2BO=244cm=8cm。

例2:(补充例题)

已知:如图4.5-5四边形ABCD中,ABC=ADC=90, E是AC的中点,EF平分BED交BD于点F。

(l)猜想:EF与BD具有怎样的关系?

(2)试证明你的猜想。

解:(l)EF垂直平分BD。

(2)证明:∵ABC=90,点E是AC的中点。

(直角三角形的斜边上的中线等于斜边的一半)。

同理: 。

BE=DE。

又∵EF平分BED。

EFBD,BF=DF。

说明:本例是一道不给出结论,需要学生自己观察---猜想---讨论的几何命题,有助于发展学生的推理(包括合情推理和逻辑推理)能力。如果学生不适应,或有困难,教师可根据实际情况加以引导,这种训练,重要的不是猜对了没有?证明了没有?而是让学生经历这样一种自己研究图形性质的过程,顺便指出:求解本题的重要基础是识图技能----能从复杂图形中分解出如图4.5-6所示的三个基本图形。

课堂练习

1、课本例1后练习题第2题。

2、课本例1后练习题第4题。

小结

1、矩形的定义:

2、归纳总结矩形的性质:

对边平行且相等

四个角都是直角

对角线平行且相等

3、直角三角形斜边上的中线等于斜边的一半。

4、矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成四个全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决。

作业

l.课本习题4.3A组第2题。

2、课本复习题四A组第6、7题。

八年级数学教案 篇14

一、教学目标:

1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

2、能力目标:

①,在实践操作过程中,逐步探索图形之间的平移关系;

②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

二、重点与难点:

重点:图形连续变化的特点;

难点:图形的划分。

三、教学方法:

讲练结合。使用多媒体课件辅助教学。

四、教具准备:

多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

五、教学设计:

创设情景,探究新知:

(演示课件):教材上小狗的图案。提问:

(1)这个图案有什么特点?

(2)它可以通过什么“基本图案”,经过怎样的平移而形成?

(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

小组讨论,派代表回答。(答案可以多种)

让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

小组讨论,派代表到台上给大家讲解。

气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

畅所欲言,互相补充。

课堂小结:

在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

课堂练习:

小组讨论。

小组讨论完成。

例子一定要和大家接触紧密、典型。

答案不惟一,对于每种答案,教师都要给予充分的肯定。

六、教学反思

本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

一键复制全文保存为WORD
相关文章