“物理”一词的最先出自希腊文φυσικ,原意是指自然。古时欧洲人称呼物理学作“自然哲学”。从最广泛的意义上来说即是研究大自然现象及规律的学问。
1、受力分析:
要根据力的概念,从物体所处的环境(与多少物体接触,处于什么场中)和运动状态着手,其常规如下:
(1)确定研究对象,并隔离出来;
(2)先画重力,然后弹力、摩擦力,再画电、磁场力;
(3)检查受力图,找出所画力的施力物体,分析结果能否使物体处于题设的运动状态(静止或加速),否则必然是多力或漏力;
(4)合力或分力不能重复列为物体所受的力。
2、整体法和隔离体法
(1)整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。
(2)隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑物体对其它物体的作用力。
(3)方法选择
所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简单明了,而不必考虑内力的作用;当涉及的物理问题是物体间的作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。
3、注意事项:
正确分析物体的受力情况,是解决力学问题的基础和关键,在具体操作时应注意:
(1)弹力和摩擦力都是产生于相互接触的两个物体之间,因此要从接触点处判断弹力和摩擦力是否存在,如果存在,则根据弹力和摩擦力的方向,画好这两个力
(2)画受力图时要逐一检查各个力,找不到施力物体的力一定是无中生有的,同时应只画物体的受力,不能把对象对其它物体的施力也画进去
易错现象:
1.不能正确判定弹力和摩擦力的有无;
2.不能灵活选取研究对象;
3.受力分析时受力与施力分不清。
高一物理必修一知识点总结:匀变速直线运动的规律及其应用
1、定义:在任意相等的`时间内速度的变化都相等的直线运动
2、匀变速直线运动的基本规律
(1)任意两个连续相等的时间T内的位移之差为恒量
(2)某段时间内时间中点瞬时速度等于这段时间内的平均速度
4、初速度为零的匀加速直线运动的比例式(2)初速度为零的匀变速直线运动中的几个重要结论
①1T末,2T末,3T末……瞬时速度之比为:
v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n
②1T内,2T内,3T内……位移之比为:
x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n—1)
③第一个T内,第二个T内,第三个T内……第n个T内的位移之比为:
xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2
④通过连续相等的位移所用时间之比为:
易错现象:
1、在一系列的公式中,不注意的v、a正、负。
2、纸带的处理,是这部分的重点和难点,也是易错问题。
3、滥用初速度为零的匀加速直线运动的特殊公式。
高一物理必修一知识点总结:自由落体运动,竖直上抛运动
1、自由落体运动:只在重力作用下由静止开始的下落运动,因为忽略了空气的阻力,所以是一种理想的运动,是初速度为零、加速度为g的匀加速直线运动。
2、自由落体运动规律
3、竖直上抛运动:
可以看作是初速度为v0,加速度方向与v0方向相反,大小等于的g的匀减速直线运动,可以把它分为向上和向下两个过程来处理。
(2)竖直上抛运动的对称性
物体以初速度v0竖直上抛,A、B为途中的任意两点,C为点,则:
(1)时间对称性
物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA。
(2)速度对称性
物体上升过程经过A点的速度与下降过程经过A点的速度大小相等。
[关键一点]
在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也可能处于下降阶段,因此这类问题可能造成时间多解或者速度多解。
易错现象
1、忽略自由落体运动必须同时具备仅受重力和初速度为零
2、忽略竖直上抛运动中的多解
3、小球或杆过某一位置或圆筒的问题
高一物理必修一知识点整理:运动的图象运动的相遇和追及问题
1、图象:
图像在中学物理中占有举足轻重的地位,其优点是可以形象直观地反映物理量间的函数关系。位移和速度都是时间的函数,在描述运动规律时,常用x—t图象和v—t图象。
(1)x—t图象
①物理意义:反映了做直线运动的物体的位移随时间变化的规律。②表示物体处于静止状态
②图线斜率的意义
①图线上某点切线的斜率的大小表示物体速度的大小。
②图线上某点切线的斜率的正负表示物体方向。
③两种特殊的x—t图象
(1)匀速直线运动的x—t图象是一条过原点的直线。
(2)若x—t图象是一条平行于时间轴的直线,则表示物体处
于静止状态
(2)v—t图象
①物理意义:反映了做直线运动的物体的速度随时间变化
的规律。
②图线斜率的意义
a图线上某点切线的斜率的大小表示物体运动的加速度的大小。
b图线上某点切线的斜率的正负表示加速度的方向。
③图象与坐标轴围成的“面积”的意义
a图象与坐标轴围成的面积的数值表示相应时间内的位移的大小。
b若此面积在时间轴的上方,表示这段时间内的位移�
③常见的两种图象形式
(1)匀速直线运动的v—t图象是与横轴平行的直线。
(2)匀变速直线运动的v—t图象是一条倾斜的直线。
2、相遇和追及问题:
这类问题的关键是两物体在运动过程中,速度关系和位移关系,要注意寻找问题中隐含的临界条件。
1、混淆x—t图象和v—t图象,不能区分它们的物理意义
2、不能正确计算图线的斜率、面积
3、在处理汽车刹车、飞机降落等实际问题时注意,汽车、飞机停止后不会后退
位移和路程
(1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。
(2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是的,它与质点的具体运动过程有关。
(3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。
匀变速直线运动的研究
匀变速直线运动是运动学中最典型的也是最简单的理想化的运动形式,学习本章的有关知识对于运动学将会有更深入地了解,难点在于速度、时间以及位移这三者物理量之间的关系。要熟练掌握有关的知识,灵活的加以运用。最后,本章末讲学习一种有代表性的匀变速直线运动形式:自由落体运动。
考试的要求:
Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。
Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。
要求Ⅱ:匀速直线运动,匀变速直线运动,速度与时间的关系,位移与时间的关系,位移与速度的关系,v-t图的物理意义以及图像上的有关信息。
认识形变
1、物体形状回体积发生变化简称形变。
2、分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。
按效果分:弹性形变、塑性形变
3、弹力有无的判断:1)定义法(产生条件)
2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。
3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。
弹性与弹性限度
1、物体具有恢复原状的性质称为弹性。
2、撤去外力后,物体能完全恢复原状的形变,称为弹性形变。
3、如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。
探究弹力
1、产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。
2、弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。
绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。
弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
3、在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。
F=kx
4、上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。
5、弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2
合力的计算
方法:公式法,图解法(平行四边形/多边形/△)
三角形定则:将两个分力首尾相接,连接始末端的有向线段即表示它们的合力。
设F为F1、F2的合力,θ为F1、F2的夹角,则:
F=√F12+F22+2F1F2cosθtanθ=F2sinθ/(F1+F2cosθ)
当两分力垂直时,F=F12+F22,当两分力大小相等时,F=2F1cos(θ/2)
1)|F1—F2|≤F≤|F1+F2|
2)随F1、F2夹角的增大,合力F逐渐减小。
3)当两个分力同向时θ=0,合力:F=F1+F2
4)当两个分力反向时θ=180°,合力最小:F=|F1—F2|
5)当两个分力垂直时θ=90°,F2=F12+F22
分力的计算
分解原则:力的实际效果/解题方便(正交分解)
受力分析顺序:G→N→F→电磁力
一。曲线运动
1、曲线运动的位移:平面直角坐标系 通常设位移方向与x轴夹角为α
2、曲线运动的速度:
①质点在某一点的速度,沿曲线在这一点的切线方向
②速度在平面直角坐标系中可分解为水平速度Vx及竖直速度Vy,V2=Vx2+Vy2
3、曲线运动是变速运动(速度是矢量,方向或大小任一的改变都会造成速度的变化,曲线运动中,速度的方向一定改变)
4、物体做曲线运动的条件:物体所受合力的方向与它的速度方向不在同一直线上
二。平抛运动(曲线运动特例)
1、定义:以一定的速度将物体抛出,如果物体只受重力的作用,这时的运动叫做抛体运动,抛体运动开始时的速度叫做初速度。如果初速度是沿水平方向的,这个运动叫做平抛运动
2、平抛运动的速度:①水平方向做匀速直线运动 初速度V0即为Vx一直保持不变
②竖直方向做自由落体运动 Vy=gt
③合速度:V2=Vx2+Vy2=V02+(gt)2 方向:与X轴的夹角为θ tanθ=Vy/V0=gt/V0
3、平抛运动的位移:①水平方向 X=V0t
②竖直方向y=1/2gt2 ③合位移 S2=x2+y2=(V0t)2+(1/2gt2 )2 方向:与X轴夹角为α tanα=y/x=V0t/?gt2=2V0/gt
三。圆周运动
1、线速度V:①圆周运动的快慢可以用物体通过的弧长与所用时间的比值来量度 该比值即为线速度 ②V=Δs/Δt 单位:m/s③匀速圆周运动:物体沿着圆周运动,并且线速度的大小处处相等(tips:方向时时改变)
2、角速度ω:①物体做圆周运动的快慢还可以用它与圆心连线扫过角度的快慢来描述,即角速度 ② 公式 ω=Δθ/Δt (角度使用弧度制) ω的单位是rad/s
3、转速r:物体单位时间转过的圈数 单位:转每秒或转每分
4、周期T:做匀速圆周运动的物体,转过一周所用的时间 单位:秒S
5、关系式:V=ωr(r为半径) ω=2π/T
6、向心加速度①定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫做向心加速度
②表达式 a=V2/r=ω2r=(4π2/T2)r=4π2f2r=4π2n2r(n指转过的圈数)方向:指向圆心
四。开普勒定律
1、开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处于椭圆的一个焦点上
2、开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间扫过相等的面积
3、开普勒第三定律:①所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等 ②a—椭圆轨道的半长轴 T—公转周期 则 a3/T2=k 对同一个行星来说,k为常量
1.弹力
⑴发生弹性形变的物体,会对跟它接触的物体产生力的作用,这种力叫做弹力。
⑵产生弹力必须具备两个条件:
①两物体直接接触;
②两物体的接触处发生弹性形变。
2.弹力的方向:物体之间的正压力一定垂直于它们的接触面。绳对物体的拉力方向总是沿着绳而指向绳收缩的方向,在分析拉力方向时应先确定受力物体。
3.弹力的大小:弹力的大小与弹性形变的大小有关,弹性形变越大,弹力越大。
弹簧弹力:F=Kx(x为伸长量或压缩量,K为劲度系数)
4.相互接触的物体是否存在弹力的判断方法:如果物体间存在微小形变,不易觉察,这时可用假设法进行判定。