数学历史故事【优秀4篇】

数学的历史小故事有哪些?某些故事是人类对自身历史的一种记忆行为,人们通过多种故事形式,数学在古代就有了。下面是整理的数学历史故事【优秀4篇】,希望能够给予您一些参考与帮助。

数学小故事 篇1

勒斯(古希腊数学家、天文学家)来到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度。泰勒斯说可以,但有一个条件——法老必须在场。第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓。秦勒斯来到金字塔前,阳光把他的影子投在地面上。

每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离。这样,他就报出了金字塔确切的高度。

在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理。也就是今天所说的相似三角形定理。

拓展资料: 篇2

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。

而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。

其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).

在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”).

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

数学小故事 篇3

大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。

他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,

在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。

但是。虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。

数学小故事 篇4

祖冲之(公元429-500),字文远,是我国古代南北朝时代南朝杰出的科学家,原籍是范阳郡遒县(今河北莱源县),因战乱,他的祖先迁居江南。公元429年,祖冲之诞生在南方宋朝一个士大夫的家庭。这家有几代研究历法,祖父掌管土木建筑,也懂得一些科学技术,所以祖冲之从小就有机会接触家传的科学知识,他少年时代就开始钻研古代的经典。思想机敏。勇于创新,勤奋地学习,对各种事物敢于大胆设想,勇于创新,并且勤于实践。他搜集和阅读了大量有关天文、数学等方面的书籍与文献资料,并经常进行精密的测量和仔细的推算。就象自己说的那样;“亲量圭尺,躬察仪漏,目尽毫厘,心军筹策”。由于他既崇尚抽象的理论,又注重理论的应用,突破了天命论、神秘主义的桎梏,敢于实践,勇于改革,因此在当时劳动人民创造的高度发达的物质财富的基础上,取得了不少有价值的科学成果,特别是天文历法和数学方面的成就更为突出。

我国古代曾经长期采用“十九年七闰月”的方法作为历法来计算阴历。祖冲之经过仔细推算和研究,发现这种历法虽然可以使两种(阴历和阳历)天数大致相符,但还不够精确,过了二百年就会相差一天。因此,他决心打破传统观念改革闰法。总结了前人经验,经反复实验,科学计算,改为第三百九十一年中有一百四十四个闰年。这样就相当精确了。他在一文历法中的另一重大成就是在历法计算中第一次应用了岁差,即指地球围绕太阳运行五周,不可能完全回到上一年的冬至点的现象。他算出了岁差为四十五年十一个月后退一度(一度等于60分),并在他的《大明历》中加以应用。虽然尚不够准确,但这在天文学史上却是一个空前的创举。为了使历法更精确,他还算出交点月,即月亮连续两次经过黄白交点所需的时间是27。21223日,这与现代测得的21。21222日极相近似。这为准确地算日食月食妇生的时间创造了条件。

在上述基础上,他制成了当时最科学的历法——《大明历》。那时他才三十三岁,公元462年,他把《大明历》交给朝廷,请求予以颁行。但遭到以贵族官僚戴法兴为首的坚决反对。戴法兴是一个很有权势的人物,又稍稍懂一点历史,但思想非常保守,戴硬说太阳转动一周(实际上是地球绕太阳一周)的时间有快有慢,没有规律。祖冲之反驳说:“太阳的转动是有一眯规律的,这是有事实根据的”。戴又说:“日月星辰的快慢变化,凡人是测算不出的”。祖冲之说“这些变化并不神秘,只要人们进行精密的观测和细致的推算,是完全可以算出来的。事实上人们已掌握了一定的规律”。把戴批驳得哑口无言,祖冲之终于击败了保守势力,取取得最后胜利,然而直到他死后十年在他儿子祖恒再三推荐下,新历法才在公元510年被正式采用。

祖冲之在数学研究方面,特别是在圆周率的研究上,做出了在数学史具有深远影响的巨磊贡献。古代最早求得的圆周率是“3”,西汉末年刘又得到3.1547的圆周率值。东汉的张衡算出3.1622的值,到了三国末年,数学家刘徽创造了用割圆术求得圆周率方法,得出3.141024的值。祖冲之地吸收了其中一些有的东西,又不为前人结论束缚,经过自己的精密测算,算出圆周率值在3.1415926和3.1415927之间,并以22/7和355/113作为用分数表示圆周率的疏率和密率。这是世界上第一个最精确的圆周率,欧洲人奥托和安托尼兹直到公元1573年,才先后求出这个数值。实际上早在他们一千一百多年前,祖冲之就得到这个数值了,因而,日本数学家三上义夫主张称名为“祖率”。

祖冲之在推算圆周率时,对九位数的大数目,需要反复进行包括加减乘除与开方等方法的运算五百三十次以上。而且当时他还是用筹码(小竹棍)来计算的。从这里可以看出他严谨的治学态度和坚韧不拔的毅力。

后来,祖冲之把数学上的研究成果写成一本书,叫做“缀术”,内容很丰富,可惜早已失传了。

除了在天文、历法和数学方面做出重大贡献外,在他五十岁那年,曾经仿制成功一辆指南车,这车子不管怎么转动,车上木人的手总是指着南方。他又看到群众用人力磨数值非常吃力,于是开动脑筋,反复实验,制成了水碓磨。同时还制造成功一种“千里船”,经过试验,日行百余里。此外,他还懂得音乐,注过多种经典。因而祖冲之可以说是我国古代杰出而又博学多才的一位科学家。

祖恒是祖冲之的儿子,字景烁,生卒年月已无可考。他也是一个博学多才的数学家,曾在公元504年、509年和510年三次上书建议采用祖冲之的《大明历》,终于实现了父亲的遗愿。

祖恒的主要工作是修补编辑祖冲之的《缀术》。

祖恒推导球体积公式的方法非常巧妙,其理论依据是这样一条被他当作“公理”使用的命题:“幂势既同,则积不容异”,其中“幂”是截面积,“势”是立体的高。把这命题翻译成现\\代汉文并写得详细一点就是:“界于二平行平面之间的确良两个立体,被任一平行这二平面的平面所截,如果两个截面的面积相等,则这两个立体的体积相等”。这命题在国外通常称为“卡瓦列利原理”或“卡瓦列利定理”。卡瓦列利(1598-1647)是意大利米兰人,伽利略的学生,波伦拿大学教授,为十七世纪意大利数学家中影响最大的一个。这定理是他于1635年在波伦拿出版的名著《连续不可分几何》一书中提出的,但却比祖恒迟了1100多年。

一键复制全文保存为WORD
相关文章