余弦定理的三种证明方法通用3篇

余弦定理证明 篇1

垂心余弦定理证明

如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c . 以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA) . ∴CB = (ccosA-b,csinA).

现将CB平移到起点为原点A,则AD = CB .

而 |AD| = |CB| = a ,∠DAC = π-∠BCA = π-C ,

根据三角函数的定义知D点坐标是 (acos(π-C),asin(π-C))

即 D点坐标是(-acosC,asinC),

∴ AD = (-acosC,asinC) 而 AD = CB

∴ (-acosC,asinC) = (ccosA-b,csinA)

∴ asinC = csinA …………①

-acosC = ccosA-b ……②

由①得 asinA = csinC ,同理可证 asinA = bsinB ,

∴ asinA = bsinB = csinC .

由②得 acosC = b-ccosA ,平方得:

a2cos2C = b2-2bccosA + c2cos2A ,

即 a2-a2sin2C = b2-2bccosA + c2-c2sin2A .

而由①可得 a2sin2C = c2sin2A

∴ a2 = b2 + c2-2bccosA .

同理可证 b2 = a2 + c2-2accosB ,

c2 = a2 + b2-2abcosC .

到此正弦定理和余弦定理证明完毕。

2

正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法。人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受。本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合。

定理:在△ABC中,AB=c,AC=b,BC=a,则

(1)(正弦定理) = = ;

(2)(余弦定理)

c2=a2+b2-2abcos C,

b2=a2+c2-2accos B,

a2=b2+c2-2bccos A.

一、正弦定理的证明

证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有

AD=bsin∠BCA,

BE=csin∠CAB,

CF=asin∠ABC。

所以S△ABC=abcsin∠BCA

=bcsin∠CAB

=casin∠ABC.

证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有

AD=bsin∠BCA=csin∠ABC,

BE=asin∠BCA=csin∠CAB。

证法三:如图2,设CD=2r是△ABC的外接圆

的直径,则∠DAC=90°,∠ABC=∠ADC。

证法四:如图3,设单位向量j与向量AC垂直。

因为AB=AC+CB,

所以jAB=j(AC+CB)=jAC+jCB.

因为jAC=0,

jCB=| j ||CB|cos(90°-∠C)=asinC,

jAB=| j ||AB|cos(90°-∠A)=csinA .

二、余弦定理的证明

法一:在△ABC中,已知 ,求c。

过A作 ,

在Rt 中, ,

法二:

,即:

法三:

先证明如下等式:

证明:

故⑴式成立,再由正弦定理变形,得

结合⑴、 有

即 .

同理可证

.

三、正余弦定理的统一证明

法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,

∴C′(acos(π-B),asin(π-B))=C′(-acos B,asin B).

根据向量的运算:

=(-acos B,asin B),

= - =(bcos A-c,bsin A),

(1)由 = :得

asin B=bsin A,即

= .

同理可得: = .

∴ = = .

(2)由 =(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A,

又| |=a,

∴a2=b2+c2-2bccos A.

同理:

c2=a2+b2-2abcos C;

b2=a2+c2-2accos B.

法二:如图5,

,设 轴、 轴方向上的单位向量分别为 、 ,将上式的两边分别与 、 作数量积,可知

将(1)式改写为

化简得b2-a2-c2=-2accos B.

即b2=a2+c2-2accos B.(4)

这里(1)为射影定理,(2)为正弦定理,(4)为余弦定理。

垂心余弦定理证明 篇2

用余弦定理证明

用余弦定理证明

由正弦定理得cSinB=bSinC

带入给定的式子得

SinC=SinB(1+2CosA)①

C+A+B=π②

将②带入①得

Sin(π-A-B)=SinB+2SinBcosA

SinAcosB+SinBcosA=SinB+2SinBcosA

SinAcosB=SinB+SinBcosA

Sin(A-B)=SinB

所以A-B=B或∏-(A-B)=B(舍)

所以A=2B

2

在△ABC中,AB=c、BC=a、CA=b

则c^2=a^2+b^2-2ab*cosC

a^2=b^2+c^2-2bc*cosA

b^2=a^2+c^2-2ac*cosB

下面在锐角△中证明第一个等式,在钝角△中证明以此类推。

过A作AD⊥BC于D,则BD+CD=a

由勾股定理得:

c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2

所以c^2=(AD)^2-(CD)^2+b^2

=(a-CD)^2-(CD)^2+b^2

=a^2-2a*CD +(CD)^2-(CD)^2+b^2

=a^2+b^2-2a*CD

因为cosC=CD/b

所以CD=b*cosC

所以c^2=a^2+b^2-2ab*cosC

题目中^2表示平方。

2

谈正、余弦定理的多种证法

聊城二中 魏清泉

正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法。人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受。本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合。

定理:在△ABC中,AB=c,AC=b,BC=a,则

(1)(正弦定理) = = ;

(2)(余弦定理)

c2=a2+b2-2abcos C,

b2=a2+c2-2accos B,

a2=b2+c2-2bccos A.

一、正弦定理的'证明

证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有

AD=bsin∠BCA,

BE=csin∠CAB,

CF=asin∠ABC。

所以S△ABC=abcsin∠BCA

=bcsin∠CAB

=casin∠ABC.

证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有

AD=bsin∠BCA=csin∠ABC,

BE=asin∠BCA=csin∠CAB。

证法三:如图2,设CD=2r是△ABC的外接圆

的直径,则∠DAC=90°,∠ABC=∠ADC。

证法四:如图3,设单位向量j与向量AC垂直。

因为AB=AC+CB,

所以jAB=j(AC+CB)=jAC+jCB.

因为jAC=0,

jCB=| j ||CB| www.haozuowen.net cos(90°-∠C)=asinC,

jAB=| j ||AB|cos(90°-∠A)=csinA .

二、余弦定理的证明

法一:在△ABC中,已知 ,求c。

过A作 ,

在Rt 中, ,

法二:

,即:

法三:

先证明如下等式:

证明:

故⑴式成立,再由正弦定理变形,得

结合⑴、 有

即 .

同理可证

.

三、正余弦定理的统一证明

法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,

∴C′(acos(π-B),asin(π-B))=C′(-acos B,asin B).

根据向量的运算:

=(-acos B,asin B),

= - =(bcos A-c,bsin A),

(1)由 = :得

asin B=bsin A,即

= .

同理可得: = .

∴ = = .

(2)由 =(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A,

又| |=a,

∴a2=b2+c2-2bccos A.

同理:

c2=a2+b2-2abcos C;

b2=a2+c2-2accos B.

法二:如图5,

,设 轴、 轴方向上的单位向量分别为 、 ,将上式的两边分别与 、 作数量积,可知

将(1)式改写为

化简得b2-a2-c2=-2accos B.

即b2=a2+c2-2accos B.(4)

这里(1)为射影定理,(2)为正弦定理,(4)为余弦定理。

参考文献

【1】孟燕平?抓住特征,灵活转换?数学通报20第11期。

【2】《中学生数学》(上)203月上

【3】《数学(必修5)》人民教育出版社

用余弦定理证明 篇3

三角形余弦定理的公式:

对于边长为a、b、c而相应角为A、B、C的三角形,有:

a2=b2+c2-bc·cosA

b2=a2+c2-ac·cosB

c2=a2+b2-ab·cosC

也可表示为:

cosC=(a2+b2-c2)/ab

cosB=(a2+c2-b2)/ac

cosA=(c2+b2-a2)/bc

这个定理也可以通过把三角形分为两个直角三角形来证明。

如果这个角不是两条边的夹角,那么三角形可能不是唯一的`(边-边-角)。要小心余弦定理的这种歧义情况。

三角形余弦定理的证明:

平面向量证法(觉得这个方法不是很好,平面的向量的公式a·b=|a||b|Cosθ本来还是由余弦定理得出来的,怎么又能反过来证明余弦定理)∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

∴c·c=(a+b)·(a+b)

∴c2=a·a+2a·b+b·b∴c2=a2+b2+2|a||b|Cos(π-θ)

(以上粗体字符表示向量)

又∵Cos(π-θ)=-Cosθ

∴c2=a2+b2-2|a||b|Cosθ(注意:这里用到了三角函数公式)

再拆开,得c2=a2+b2-2abcosC

即cosC=(a2+b2-c2)/2*a*b

同理可证其他,而下面的cosC=(c2-b2-a2)/2ab就是将cosC移到左边表示一下。

平面几何证法

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC2=AD2+DC2

b2=(sinBc)2+(a-cosBc)2

b2=(sinB*c)2+a2-2accosB+(cosB)2c2

b2=(sinB2+cosB2)c2-2accosB+a2

b2=c2+a2-2accosB

cosB=(c2+a2-b2)/2ac

一键复制全文保存为WORD
相关文章